Information on Result #722383
Linear OA(16112, 259, F16, 64) (dual of [259, 147, 65]-code), using construction XX applied to C1 = C([254,61]), C2 = C([0,62]), C3 = C1 + C2 = C([0,61]), and C∩ = C1 ∩ C2 = C([254,62]) based on
- linear OA(16110, 255, F16, 63) (dual of [255, 145, 64]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−1,0,…,61}, and designed minimum distance d ≥ |I|+1 = 64 [i]
- linear OA(16110, 255, F16, 63) (dual of [255, 145, 64]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,62], and designed minimum distance d ≥ |I|+1 = 64 [i]
- linear OA(16112, 255, F16, 64) (dual of [255, 143, 65]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−1,0,…,62}, and designed minimum distance d ≥ |I|+1 = 65 [i]
- linear OA(16108, 255, F16, 62) (dual of [255, 147, 63]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,61], and designed minimum distance d ≥ |I|+1 = 63 [i]
- linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(160, s, F16, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(16112, 129, F16, 2, 64) (dual of [(129, 2), 146, 65]-NRT-code) | [i] | OOA Folding |