Information on Result #722466
Linear OA(16113, 605, F16, 41) (dual of [605, 492, 42]-code), using construction XX applied to C1 = C([0,39]), C2 = C([7,40]), C3 = C1 + C2 = C([7,39]), and C∩ = C1 ∩ C2 = C([0,40]) based on
- linear OA(16104, 585, F16, 40) (dual of [585, 481, 41]-code), using the expurgated narrow-sense BCH-code C(I) with length 585 | 163−1, defining interval I = [0,39], and designed minimum distance d ≥ |I|+1 = 41 [i]
- linear OA(1694, 585, F16, 34) (dual of [585, 491, 35]-code), using the BCH-code C(I) with length 585 | 163−1, defining interval I = {7,8,…,40}, and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(16107, 585, F16, 41) (dual of [585, 478, 42]-code), using the expurgated narrow-sense BCH-code C(I) with length 585 | 163−1, defining interval I = [0,40], and designed minimum distance d ≥ |I|+1 = 42 [i]
- linear OA(1691, 585, F16, 33) (dual of [585, 494, 34]-code), using the BCH-code C(I) with length 585 | 163−1, defining interval I = {7,8,…,39}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(166, 17, F16, 6) (dual of [17, 11, 7]-code or 17-arc in PG(5,16)), using
- extended Reed–Solomon code RSe(11,16) [i]
- linear OA(160, 3, F16, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(160, s, F16, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(16113, 302, F16, 2, 41) (dual of [(302, 2), 491, 42]-NRT-code) | [i] | OOA Folding |