Information on Result #722849
Linear OA(2562, 212, F25, 34) (dual of [212, 150, 35]-code), using construction XX applied to C1 = C([207,31]), C2 = C([0,32]), C3 = C1 + C2 = C([0,31]), and C∩ = C1 ∩ C2 = C([207,32]) based on
- linear OA(2560, 208, F25, 33) (dual of [208, 148, 34]-code), using the BCH-code C(I) with length 208 | 252−1, defining interval I = {−1,0,…,31}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(2560, 208, F25, 33) (dual of [208, 148, 34]-code), using the expurgated narrow-sense BCH-code C(I) with length 208 | 252−1, defining interval I = [0,32], and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(2562, 208, F25, 34) (dual of [208, 146, 35]-code), using the BCH-code C(I) with length 208 | 252−1, defining interval I = {−1,0,…,32}, and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(2558, 208, F25, 32) (dual of [208, 150, 33]-code), using the expurgated narrow-sense BCH-code C(I) with length 208 | 252−1, defining interval I = [0,31], and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(250, s, F25, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2562, 106, F25, 2, 34) (dual of [(106, 2), 150, 35]-NRT-code) | [i] | OOA Folding |