Information on Result #722863
Linear OA(2567, 212, F25, 38) (dual of [212, 145, 39]-code), using construction XX applied to C1 = C([8,44]), C2 = C([7,43]), C3 = C1 + C2 = C([8,43]), and C∩ = C1 ∩ C2 = C([7,44]) based on
- linear OA(2565, 208, F25, 37) (dual of [208, 143, 38]-code), using the BCH-code C(I) with length 208 | 252−1, defining interval I = {8,9,…,44}, and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(2565, 208, F25, 37) (dual of [208, 143, 38]-code), using the BCH-code C(I) with length 208 | 252−1, defining interval I = {7,8,…,43}, and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(2567, 208, F25, 38) (dual of [208, 141, 39]-code), using the BCH-code C(I) with length 208 | 252−1, defining interval I = {7,8,…,44}, and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(2563, 208, F25, 36) (dual of [208, 145, 37]-code), using the BCH-code C(I) with length 208 | 252−1, defining interval I = {8,9,…,43}, and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(250, s, F25, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2567, 106, F25, 2, 38) (dual of [(106, 2), 145, 39]-NRT-code) | [i] | OOA Folding |