Information on Result #722889
Linear OA(2542, 316, F25, 22) (dual of [316, 274, 23]-code), using construction XX applied to C1 = C([311,19]), C2 = C([0,20]), C3 = C1 + C2 = C([0,19]), and C∩ = C1 ∩ C2 = C([311,20]) based on
- linear OA(2540, 312, F25, 21) (dual of [312, 272, 22]-code), using the BCH-code C(I) with length 312 | 252−1, defining interval I = {−1,0,…,19}, and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(2540, 312, F25, 21) (dual of [312, 272, 22]-code), using the expurgated narrow-sense BCH-code C(I) with length 312 | 252−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(2542, 312, F25, 22) (dual of [312, 270, 23]-code), using the BCH-code C(I) with length 312 | 252−1, defining interval I = {−1,0,…,20}, and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(2538, 312, F25, 20) (dual of [312, 274, 21]-code), using the expurgated narrow-sense BCH-code C(I) with length 312 | 252−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(250, s, F25, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2542, 158, F25, 2, 22) (dual of [(158, 2), 274, 23]-NRT-code) | [i] | OOA Folding |