Information on Result #723423
Linear OA(2542, 624, F25, 21) (dual of [624, 582, 22]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {5,6,…,25}, and designed minimum distance d ≥ |I|+1 = 22
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2542, 335, F25, 2, 21) (dual of [(335, 2), 628, 22]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Digital (21, 42, 335)-net over F25 | [i] | ||
3 | Linear OA(2561, 659, F25, 25) (dual of [659, 598, 26]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
4 | Linear OA(2560, 659, F25, 25) (dual of [659, 599, 26]-code) | [i] | ✔ | |
5 | Linear OA(2562, 661, F25, 26) (dual of [661, 599, 27]-code) | [i] | ✔ | |
6 | Linear OA(2572, 654, F25, 33) (dual of [654, 582, 34]-code) | [i] | ✔ | |
7 | Linear OA(2577, 659, F25, 34) (dual of [659, 582, 35]-code) | [i] | ✔ | |
8 | Linear OA(2576, 657, F25, 34) (dual of [657, 581, 35]-code) | [i] | ✔ | |
9 | Linear OA(2575, 657, F25, 34) (dual of [657, 582, 35]-code) | [i] | ✔ | |
10 | Linear OA(2580, 662, F25, 35) (dual of [662, 582, 36]-code) | [i] | ✔ | |
11 | Linear OA(2579, 660, F25, 35) (dual of [660, 581, 36]-code) | [i] | ✔ | |
12 | Linear OA(2578, 660, F25, 35) (dual of [660, 582, 36]-code) | [i] | ✔ | |
13 | Linear OA(2583, 665, F25, 36) (dual of [665, 582, 37]-code) | [i] | ✔ | |
14 | Linear OA(2582, 663, F25, 36) (dual of [663, 581, 37]-code) | [i] | ✔ | |
15 | Linear OA(2581, 663, F25, 36) (dual of [663, 582, 37]-code) | [i] | ✔ | |
16 | Linear OA(2586, 668, F25, 37) (dual of [668, 582, 38]-code) | [i] | ✔ | |
17 | Linear OA(2585, 666, F25, 37) (dual of [666, 581, 38]-code) | [i] | ✔ | |
18 | Linear OA(2584, 666, F25, 37) (dual of [666, 582, 38]-code) | [i] | ✔ | |
19 | Linear OA(2589, 671, F25, 38) (dual of [671, 582, 39]-code) | [i] | ✔ | |
20 | Linear OA(2588, 669, F25, 38) (dual of [669, 581, 39]-code) | [i] | ✔ | |
21 | Linear OA(2587, 669, F25, 38) (dual of [669, 582, 39]-code) | [i] | ✔ | |
22 | Linear OA(2592, 674, F25, 39) (dual of [674, 582, 40]-code) | [i] | ✔ | |
23 | Linear OA(2591, 672, F25, 39) (dual of [672, 581, 40]-code) | [i] | ✔ | |
24 | Linear OA(2590, 672, F25, 39) (dual of [672, 582, 40]-code) | [i] | ✔ | |
25 | Linear OA(2595, 677, F25, 40) (dual of [677, 582, 41]-code) | [i] | ✔ | |
26 | Linear OA(2594, 675, F25, 40) (dual of [675, 581, 41]-code) | [i] | ✔ | |
27 | Linear OA(2593, 675, F25, 40) (dual of [675, 582, 41]-code) | [i] | ✔ | |
28 | Linear OA(2598, 680, F25, 41) (dual of [680, 582, 42]-code) | [i] | ✔ | |
29 | Linear OA(2597, 678, F25, 41) (dual of [678, 581, 42]-code) | [i] | ✔ | |
30 | Linear OA(25101, 680, F25, 42) (dual of [680, 579, 43]-code) | [i] | ✔ | |
31 | Linear OA(25100, 678, F25, 42) (dual of [678, 578, 43]-code) | [i] | ✔ | |
32 | Linear OA(25102, 684, F25, 42) (dual of [684, 582, 43]-code) | [i] | ✔ | |
33 | Linear OA(25101, 682, F25, 42) (dual of [682, 581, 43]-code) | [i] | ✔ |