Information on Result #723498
Linear OA(2550, 624, F25, 27) (dual of [624, 574, 28]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,26], and designed minimum distance d ≥ |I|+1 = 28
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2565, 664, F25, 27) (dual of [664, 599, 28]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(2564, 661, F25, 27) (dual of [661, 597, 28]-code) | [i] | ✔ | |
3 | Linear OA(2563, 658, F25, 27) (dual of [658, 595, 28]-code) | [i] | ✔ | |
4 | Linear OA(2565, 667, F25, 27) (dual of [667, 602, 28]-code) | [i] | ✔ | |
5 | Linear OA(2564, 664, F25, 27) (dual of [664, 600, 28]-code) | [i] | ✔ | |
6 | Linear OA(2563, 661, F25, 27) (dual of [661, 598, 28]-code) | [i] | ✔ | |
7 | Linear OA(2562, 658, F25, 27) (dual of [658, 596, 28]-code) | [i] | ✔ | |
8 | Linear OA(2561, 655, F25, 27) (dual of [655, 594, 28]-code) | [i] | ✔ | |
9 | Linear OA(2563, 655, F25, 28) (dual of [655, 592, 29]-code) | [i] | ✔ | |
10 | Linear OA(2567, 658, F25, 29) (dual of [658, 591, 30]-code) | [i] | ✔ | |
11 | Linear OA(2561, 652, F25, 28) (dual of [652, 591, 29]-code) | [i] | ✔ | |
12 | Linear OA(2566, 658, F25, 29) (dual of [658, 592, 30]-code) | [i] | ✔ | |
13 | Linear OA(2570, 661, F25, 30) (dual of [661, 591, 31]-code) | [i] | ✔ | |
14 | Linear OA(2560, 649, F25, 28) (dual of [649, 589, 29]-code) | [i] | ✔ | |
15 | Linear OA(2564, 655, F25, 29) (dual of [655, 591, 30]-code) | [i] | ✔ | |
16 | Linear OA(2569, 661, F25, 30) (dual of [661, 592, 31]-code) | [i] | ✔ | |
17 | Linear OA(2573, 664, F25, 31) (dual of [664, 591, 32]-code) | [i] | ✔ | |
18 | Linear OA(2559, 646, F25, 28) (dual of [646, 587, 29]-code) | [i] | ✔ | |
19 | Linear OA(2567, 658, F25, 30) (dual of [658, 591, 31]-code) | [i] | ✔ | |
20 | Linear OA(2572, 664, F25, 31) (dual of [664, 592, 32]-code) | [i] | ✔ | |
21 | Linear OA(2576, 667, F25, 32) (dual of [667, 591, 33]-code) | [i] | ✔ | |
22 | Linear OA(2558, 643, F25, 28) (dual of [643, 585, 29]-code) | [i] | ✔ | |
23 | Linear OA(2570, 661, F25, 31) (dual of [661, 591, 32]-code) | [i] | ✔ | |
24 | Linear OA(2575, 667, F25, 32) (dual of [667, 592, 33]-code) | [i] | ✔ | |
25 | Linear OA(2579, 670, F25, 33) (dual of [670, 591, 34]-code) | [i] | ✔ | |
26 | Linear OA(2557, 640, F25, 28) (dual of [640, 583, 29]-code) | [i] | ✔ | |
27 | Linear OA(2573, 664, F25, 32) (dual of [664, 591, 33]-code) | [i] | ✔ | |
28 | Linear OA(2578, 670, F25, 33) (dual of [670, 592, 34]-code) | [i] | ✔ | |
29 | Linear OA(2582, 673, F25, 34) (dual of [673, 591, 35]-code) | [i] | ✔ | |
30 | Linear OA(2556, 637, F25, 28) (dual of [637, 581, 29]-code) | [i] | ✔ | |
31 | Linear OA(2576, 667, F25, 33) (dual of [667, 591, 34]-code) | [i] | ✔ | |
32 | Linear OA(2581, 673, F25, 34) (dual of [673, 592, 35]-code) | [i] | ✔ | |
33 | Linear OA(2585, 676, F25, 35) (dual of [676, 591, 36]-code) | [i] | ✔ | |
34 | Linear OA(2555, 634, F25, 28) (dual of [634, 579, 29]-code) | [i] | ✔ | |
35 | Linear OA(2579, 670, F25, 34) (dual of [670, 591, 35]-code) | [i] | ✔ | |
36 | Linear OA(2584, 676, F25, 35) (dual of [676, 592, 36]-code) | [i] | ✔ | |
37 | Linear OA(2589, 681, F25, 36) (dual of [681, 592, 37]-code) | [i] | ✔ | |
38 | Linear OA(2588, 679, F25, 36) (dual of [679, 591, 37]-code) | [i] | ✔ | |
39 | Linear OA(2554, 631, F25, 28) (dual of [631, 577, 29]-code) | [i] | ✔ | |
40 | Linear OA(2582, 673, F25, 35) (dual of [673, 591, 36]-code) | [i] | ✔ | |
41 | Linear OA(2588, 681, F25, 36) (dual of [681, 593, 37]-code) | [i] | ✔ | |
42 | Linear OA(2587, 679, F25, 36) (dual of [679, 592, 37]-code) | [i] | ✔ | |
43 | Linear OA(2585, 676, F25, 36) (dual of [676, 591, 37]-code) | [i] | ✔ | |
44 | Linear OA(2554, 628, F25, 29) (dual of [628, 574, 30]-code) | [i] | ✔ | |
45 | Linear OA(2557, 631, F25, 30) (dual of [631, 574, 31]-code) | [i] | ✔ | |
46 | Linear OA(2560, 634, F25, 31) (dual of [634, 574, 32]-code) | [i] | ✔ | |
47 | Linear OA(2563, 637, F25, 32) (dual of [637, 574, 33]-code) | [i] | ✔ | |
48 | Linear OA(2566, 640, F25, 33) (dual of [640, 574, 34]-code) | [i] | ✔ | |
49 | Linear OA(2569, 643, F25, 34) (dual of [643, 574, 35]-code) | [i] | ✔ | |
50 | Linear OA(2572, 646, F25, 35) (dual of [646, 574, 36]-code) | [i] | ✔ | |
51 | Linear OA(2575, 649, F25, 36) (dual of [649, 574, 37]-code) | [i] | ✔ | |
52 | Linear OA(2578, 652, F25, 37) (dual of [652, 574, 38]-code) | [i] | ✔ | |
53 | Linear OA(2582, 655, F25, 38) (dual of [655, 573, 39]-code) | [i] | ✔ | |
54 | Linear OA(2581, 655, F25, 38) (dual of [655, 574, 39]-code) | [i] | ✔ | |
55 | Linear OA(2585, 658, F25, 39) (dual of [658, 573, 40]-code) | [i] | ✔ | |
56 | Linear OA(2584, 655, F25, 39) (dual of [655, 571, 40]-code) | [i] | ✔ | |
57 | Linear OA(2588, 658, F25, 40) (dual of [658, 570, 41]-code) | [i] | ✔ | |
58 | Linear OA(2584, 658, F25, 39) (dual of [658, 574, 40]-code) | [i] | ✔ | |
59 | Linear OA(2588, 661, F25, 40) (dual of [661, 573, 41]-code) | [i] | ✔ | |
60 | Linear OA(2587, 658, F25, 40) (dual of [658, 571, 41]-code) | [i] | ✔ | |
61 | Linear OA(2591, 661, F25, 41) (dual of [661, 570, 42]-code) | [i] | ✔ | |
62 | Linear OA(2590, 658, F25, 41) (dual of [658, 568, 42]-code) | [i] | ✔ | |
63 | Linear OA(2587, 661, F25, 40) (dual of [661, 574, 41]-code) | [i] | ✔ | |
64 | Linear OA(2591, 664, F25, 41) (dual of [664, 573, 42]-code) | [i] | ✔ | |
65 | Linear OA(2590, 661, F25, 41) (dual of [661, 571, 42]-code) | [i] | ✔ | |
66 | Linear OA(2594, 664, F25, 42) (dual of [664, 570, 43]-code) | [i] | ✔ | |
67 | Linear OA(2593, 661, F25, 42) (dual of [661, 568, 43]-code) | [i] | ✔ | |
68 | Linear OA(2590, 664, F25, 41) (dual of [664, 574, 42]-code) | [i] | ✔ | |
69 | Linear OA(2594, 667, F25, 42) (dual of [667, 573, 43]-code) | [i] | ✔ | |
70 | Linear OA(2593, 664, F25, 42) (dual of [664, 571, 43]-code) | [i] | ✔ | |
71 | Linear OA(2597, 667, F25, 43) (dual of [667, 570, 44]-code) | [i] | ✔ | |
72 | Linear OA(2596, 664, F25, 43) (dual of [664, 568, 44]-code) | [i] | ✔ | |
73 | Linear OA(2593, 667, F25, 42) (dual of [667, 574, 43]-code) | [i] | ✔ | |
74 | Linear OA(2597, 670, F25, 43) (dual of [670, 573, 44]-code) | [i] | ✔ | |
75 | Linear OA(2596, 667, F25, 43) (dual of [667, 571, 44]-code) | [i] | ✔ | |
76 | Linear OA(25100, 670, F25, 44) (dual of [670, 570, 45]-code) | [i] | ✔ | |
77 | Linear OA(2599, 667, F25, 44) (dual of [667, 568, 45]-code) | [i] | ✔ | |
78 | Linear OA(2596, 670, F25, 43) (dual of [670, 574, 44]-code) | [i] | ✔ | |
79 | Linear OA(25100, 673, F25, 44) (dual of [673, 573, 45]-code) | [i] | ✔ | |
80 | Linear OA(2599, 670, F25, 44) (dual of [670, 571, 45]-code) | [i] | ✔ | |
81 | Linear OA(25103, 673, F25, 45) (dual of [673, 570, 46]-code) | [i] | ✔ | |
82 | Linear OA(25102, 670, F25, 45) (dual of [670, 568, 46]-code) | [i] | ✔ | |
83 | Linear OA(2599, 673, F25, 44) (dual of [673, 574, 45]-code) | [i] | ✔ | |
84 | Linear OA(25103, 676, F25, 45) (dual of [676, 573, 46]-code) | [i] | ✔ | |
85 | Linear OA(25102, 673, F25, 45) (dual of [673, 571, 46]-code) | [i] | ✔ | |
86 | Linear OA(25106, 676, F25, 46) (dual of [676, 570, 47]-code) | [i] | ✔ | |
87 | Linear OA(25105, 673, F25, 46) (dual of [673, 568, 47]-code) | [i] | ✔ | |
88 | Linear OA(25102, 676, F25, 45) (dual of [676, 574, 46]-code) | [i] | ✔ | |
89 | Linear OA(25107, 681, F25, 46) (dual of [681, 574, 47]-code) | [i] | ✔ | |
90 | Linear OA(25106, 679, F25, 46) (dual of [679, 573, 47]-code) | [i] | ✔ | |
91 | Linear OA(25105, 676, F25, 46) (dual of [676, 571, 47]-code) | [i] | ✔ | |
92 | Linear OA(25110, 681, F25, 47) (dual of [681, 571, 48]-code) | [i] | ✔ | |
93 | Linear OA(25109, 679, F25, 47) (dual of [679, 570, 48]-code) | [i] | ✔ | |
94 | Linear OA(25108, 676, F25, 47) (dual of [676, 568, 48]-code) | [i] | ✔ |