Information on Result #723560
Linear OA(2554, 624, F25, 29) (dual of [624, 570, 30]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,28], and designed minimum distance d ≥ |I|+1 = 30
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2567, 658, F25, 29) (dual of [658, 591, 30]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(2570, 667, F25, 29) (dual of [667, 597, 30]-code) | [i] | ✔ | |
3 | Linear OA(2569, 664, F25, 29) (dual of [664, 595, 30]-code) | [i] | ✔ | |
4 | Linear OA(2568, 661, F25, 29) (dual of [661, 593, 30]-code) | [i] | ✔ | |
5 | Linear OA(2568, 662, F25, 29) (dual of [662, 594, 30]-code) | [i] | ✔ | |
6 | Linear OA(2567, 660, F25, 29) (dual of [660, 593, 30]-code) | [i] | ✔ | |
7 | Linear OA(2566, 658, F25, 29) (dual of [658, 592, 30]-code) | [i] | ✔ | |
8 | Linear OA(2570, 670, F25, 29) (dual of [670, 600, 30]-code) | [i] | ✔ | |
9 | Linear OA(2569, 667, F25, 29) (dual of [667, 598, 30]-code) | [i] | ✔ | |
10 | Linear OA(2568, 664, F25, 29) (dual of [664, 596, 30]-code) | [i] | ✔ | |
11 | Linear OA(2567, 661, F25, 29) (dual of [661, 594, 30]-code) | [i] | ✔ | |
12 | Linear OA(2565, 657, F25, 29) (dual of [657, 592, 30]-code) | [i] | ✔ | |
13 | Linear OA(2564, 655, F25, 29) (dual of [655, 591, 30]-code) | [i] | ✔ | |
14 | Linear OA(2556, 628, F25, 30) (dual of [628, 572, 31]-code) | [i] | ✔ | |
15 | Linear OA(2559, 631, F25, 31) (dual of [631, 572, 32]-code) | [i] | ✔ | |
16 | Linear OA(2562, 634, F25, 32) (dual of [634, 572, 33]-code) | [i] | ✔ | |
17 | Linear OA(2565, 637, F25, 33) (dual of [637, 572, 34]-code) | [i] | ✔ | |
18 | Linear OA(2568, 640, F25, 34) (dual of [640, 572, 35]-code) | [i] | ✔ | |
19 | Linear OA(2571, 643, F25, 35) (dual of [643, 572, 36]-code) | [i] | ✔ | |
20 | Linear OA(2582, 657, F25, 38) (dual of [657, 575, 39]-code) | [i] | ✔ | |
21 | Linear OA(2574, 646, F25, 36) (dual of [646, 572, 37]-code) | [i] | ✔ | |
22 | Linear OA(2587, 662, F25, 39) (dual of [662, 575, 40]-code) | [i] | ✔ | |
23 | Linear OA(2586, 660, F25, 39) (dual of [660, 574, 40]-code) | [i] | ✔ | |
24 | Linear OA(2585, 657, F25, 39) (dual of [657, 572, 40]-code) | [i] | ✔ | |
25 | Linear OA(2581, 655, F25, 38) (dual of [655, 574, 39]-code) | [i] | ✔ | |
26 | Linear OA(2577, 649, F25, 37) (dual of [649, 572, 38]-code) | [i] | ✔ | |
27 | Linear OA(2585, 658, F25, 39) (dual of [658, 573, 40]-code) | [i] | ✔ | |
28 | Linear OA(2584, 655, F25, 39) (dual of [655, 571, 40]-code) | [i] | ✔ | |
29 | Linear OA(2580, 652, F25, 38) (dual of [652, 572, 39]-code) | [i] | ✔ | |
30 | Linear OA(2588, 658, F25, 40) (dual of [658, 570, 41]-code) | [i] | ✔ | |
31 | Linear OA(2558, 628, F25, 31) (dual of [628, 570, 32]-code) | [i] | ✔ | |
32 | Linear OA(2561, 631, F25, 32) (dual of [631, 570, 33]-code) | [i] | ✔ | |
33 | Linear OA(2564, 634, F25, 33) (dual of [634, 570, 34]-code) | [i] | ✔ | |
34 | Linear OA(2567, 637, F25, 34) (dual of [637, 570, 35]-code) | [i] | ✔ | |
35 | Linear OA(2570, 640, F25, 35) (dual of [640, 570, 36]-code) | [i] | ✔ | |
36 | Linear OA(2573, 643, F25, 36) (dual of [643, 570, 37]-code) | [i] | ✔ | |
37 | Linear OA(2576, 646, F25, 37) (dual of [646, 570, 38]-code) | [i] | ✔ | |
38 | Linear OA(2579, 649, F25, 38) (dual of [649, 570, 39]-code) | [i] | ✔ | |
39 | Linear OA(2582, 652, F25, 39) (dual of [652, 570, 40]-code) | [i] | ✔ | |
40 | Linear OA(2585, 655, F25, 40) (dual of [655, 570, 41]-code) | [i] | ✔ | |
41 | Linear OA(2588, 655, F25, 41) (dual of [655, 567, 42]-code) | [i] | ✔ | |
42 | Linear OA(2588, 658, F25, 41) (dual of [658, 570, 42]-code) | [i] | ✔ | |
43 | Linear OA(2591, 658, F25, 42) (dual of [658, 567, 43]-code) | [i] | ✔ | |
44 | Linear OA(2594, 658, F25, 43) (dual of [658, 564, 44]-code) | [i] | ✔ | |
45 | Linear OA(2591, 661, F25, 42) (dual of [661, 570, 43]-code) | [i] | ✔ | |
46 | Linear OA(2594, 661, F25, 43) (dual of [661, 567, 44]-code) | [i] | ✔ | |
47 | Linear OA(2597, 661, F25, 44) (dual of [661, 564, 45]-code) | [i] | ✔ | |
48 | Linear OA(2594, 664, F25, 43) (dual of [664, 570, 44]-code) | [i] | ✔ | |
49 | Linear OA(2597, 664, F25, 44) (dual of [664, 567, 45]-code) | [i] | ✔ | |
50 | Linear OA(25100, 664, F25, 45) (dual of [664, 564, 46]-code) | [i] | ✔ | |
51 | Linear OA(2597, 667, F25, 44) (dual of [667, 570, 45]-code) | [i] | ✔ | |
52 | Linear OA(25100, 667, F25, 45) (dual of [667, 567, 46]-code) | [i] | ✔ | |
53 | Linear OA(25103, 667, F25, 46) (dual of [667, 564, 47]-code) | [i] | ✔ | |
54 | Linear OA(25100, 670, F25, 45) (dual of [670, 570, 46]-code) | [i] | ✔ | |
55 | Linear OA(25103, 670, F25, 46) (dual of [670, 567, 47]-code) | [i] | ✔ | |
56 | Linear OA(25106, 670, F25, 47) (dual of [670, 564, 48]-code) | [i] | ✔ | |
57 | Linear OA(25103, 673, F25, 46) (dual of [673, 570, 47]-code) | [i] | ✔ | |
58 | Linear OA(25106, 673, F25, 47) (dual of [673, 567, 48]-code) | [i] | ✔ | |
59 | Linear OA(25109, 673, F25, 48) (dual of [673, 564, 49]-code) | [i] | ✔ | |
60 | Linear OA(25106, 676, F25, 47) (dual of [676, 570, 48]-code) | [i] | ✔ | |
61 | Linear OA(25110, 679, F25, 48) (dual of [679, 569, 49]-code) | [i] | ✔ | |
62 | Linear OA(25109, 676, F25, 48) (dual of [676, 567, 49]-code) | [i] | ✔ |