Information on Result #723605
Linear OA(2552, 624, F25, 28) (dual of [624, 572, 29]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,26}, and designed minimum distance d ≥ |I|+1 = 29
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2565, 655, F25, 29) (dual of [655, 590, 30]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(2569, 658, F25, 30) (dual of [658, 589, 31]-code) | [i] | ✔ | |
3 | Linear OA(2563, 652, F25, 29) (dual of [652, 589, 30]-code) | [i] | ✔ | |
4 | Linear OA(2568, 658, F25, 30) (dual of [658, 590, 31]-code) | [i] | ✔ | |
5 | Linear OA(2572, 661, F25, 31) (dual of [661, 589, 32]-code) | [i] | ✔ | |
6 | Linear OA(2562, 649, F25, 29) (dual of [649, 587, 30]-code) | [i] | ✔ | |
7 | Linear OA(2566, 655, F25, 30) (dual of [655, 589, 31]-code) | [i] | ✔ | |
8 | Linear OA(2571, 661, F25, 31) (dual of [661, 590, 32]-code) | [i] | ✔ | |
9 | Linear OA(2575, 664, F25, 32) (dual of [664, 589, 33]-code) | [i] | ✔ | |
10 | Linear OA(2561, 646, F25, 29) (dual of [646, 585, 30]-code) | [i] | ✔ | |
11 | Linear OA(2569, 658, F25, 31) (dual of [658, 589, 32]-code) | [i] | ✔ | |
12 | Linear OA(2574, 664, F25, 32) (dual of [664, 590, 33]-code) | [i] | ✔ | |
13 | Linear OA(2578, 667, F25, 33) (dual of [667, 589, 34]-code) | [i] | ✔ | |
14 | Linear OA(2560, 643, F25, 29) (dual of [643, 583, 30]-code) | [i] | ✔ | |
15 | Linear OA(2572, 661, F25, 32) (dual of [661, 589, 33]-code) | [i] | ✔ | |
16 | Linear OA(2577, 667, F25, 33) (dual of [667, 590, 34]-code) | [i] | ✔ | |
17 | Linear OA(2581, 670, F25, 34) (dual of [670, 589, 35]-code) | [i] | ✔ | |
18 | Linear OA(2559, 640, F25, 29) (dual of [640, 581, 30]-code) | [i] | ✔ | |
19 | Linear OA(2575, 664, F25, 33) (dual of [664, 589, 34]-code) | [i] | ✔ | |
20 | Linear OA(2580, 670, F25, 34) (dual of [670, 590, 35]-code) | [i] | ✔ | |
21 | Linear OA(2584, 673, F25, 35) (dual of [673, 589, 36]-code) | [i] | ✔ | |
22 | Linear OA(2558, 637, F25, 29) (dual of [637, 579, 30]-code) | [i] | ✔ | |
23 | Linear OA(2578, 667, F25, 34) (dual of [667, 589, 35]-code) | [i] | ✔ | |
24 | Linear OA(2583, 673, F25, 35) (dual of [673, 590, 36]-code) | [i] | ✔ | |
25 | Linear OA(2587, 676, F25, 36) (dual of [676, 589, 37]-code) | [i] | ✔ | |
26 | Linear OA(2557, 634, F25, 29) (dual of [634, 577, 30]-code) | [i] | ✔ | |
27 | Linear OA(2581, 670, F25, 35) (dual of [670, 589, 36]-code) | [i] | ✔ | |
28 | Linear OA(2586, 676, F25, 36) (dual of [676, 590, 37]-code) | [i] | ✔ | |
29 | Linear OA(2591, 681, F25, 37) (dual of [681, 590, 38]-code) | [i] | ✔ | |
30 | Linear OA(2590, 679, F25, 37) (dual of [679, 589, 38]-code) | [i] | ✔ | |
31 | Linear OA(2584, 673, F25, 36) (dual of [673, 589, 37]-code) | [i] | ✔ | |
32 | Linear OA(2590, 681, F25, 37) (dual of [681, 591, 38]-code) | [i] | ✔ | |
33 | Linear OA(2589, 679, F25, 37) (dual of [679, 590, 38]-code) | [i] | ✔ | |
34 | Linear OA(2587, 676, F25, 37) (dual of [676, 589, 38]-code) | [i] | ✔ | |
35 | Linear OA(2554, 628, F25, 29) (dual of [628, 574, 30]-code) | [i] | ✔ |