Information on Result #723797

Linear OA(2551, 634, F25, 25) (dual of [634, 583, 26]-code), using construction XX applied to C1 = C([621,20]), C2 = C([0,21]), C3 = C1 + C2 = C([0,20]), and C∩ = C1 ∩ C2 = C([621,21]) based on
  1. linear OA(2547, 624, F25, 24) (dual of [624, 577, 25]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−3,−2,…,20}, and designed minimum distance d ≥ |I|+1 = 25 [i]
  2. linear OA(2543, 624, F25, 22) (dual of [624, 581, 23]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,21], and designed minimum distance d ≥ |I|+1 = 23 [i]
  3. linear OA(2549, 624, F25, 25) (dual of [624, 575, 26]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−3,−2,…,21}, and designed minimum distance d ≥ |I|+1 = 26 [i]
  4. linear OA(2541, 624, F25, 21) (dual of [624, 583, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 22 [i]
  5. linear OA(252, 8, F25, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,25)), using
  6. linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2567, 700, F25, 25) (dual of [700, 633, 26]-code) [i](u, u+v)-Construction
2Linear OA(2568, 702, F25, 25) (dual of [702, 634, 26]-code) [i]
3Linear OOA(2551, 419, F25, 2, 25) (dual of [(419, 2), 787, 26]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
4Digital (26, 51, 419)-net over F25 [i]
5Linear OOA(2551, 317, F25, 2, 25) (dual of [(317, 2), 583, 26]-NRT-code) [i]OOA Folding