Information on Result #723805
Linear OA(2559, 624, F25, 31) (dual of [624, 565, 32]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−5,−4,…,25}, and designed minimum distance d ≥ |I|+1 = 32
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2575, 659, F25, 33) (dual of [659, 584, 34]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(2574, 657, F25, 33) (dual of [657, 583, 34]-code) | [i] | ✔ | |
3 | Linear OA(2572, 654, F25, 33) (dual of [654, 582, 34]-code) | [i] | ✔ | |
4 | Linear OA(2578, 662, F25, 34) (dual of [662, 584, 35]-code) | [i] | ✔ | |
5 | Linear OA(2577, 660, F25, 34) (dual of [660, 583, 35]-code) | [i] | ✔ | |
6 | Linear OA(2575, 657, F25, 34) (dual of [657, 582, 35]-code) | [i] | ✔ | |
7 | Linear OA(2581, 665, F25, 35) (dual of [665, 584, 36]-code) | [i] | ✔ | |
8 | Linear OA(2580, 663, F25, 35) (dual of [663, 583, 36]-code) | [i] | ✔ | |
9 | Linear OA(2578, 660, F25, 35) (dual of [660, 582, 36]-code) | [i] | ✔ | |
10 | Linear OA(2584, 668, F25, 36) (dual of [668, 584, 37]-code) | [i] | ✔ | |
11 | Linear OA(2583, 666, F25, 36) (dual of [666, 583, 37]-code) | [i] | ✔ | |
12 | Linear OA(2581, 663, F25, 36) (dual of [663, 582, 37]-code) | [i] | ✔ | |
13 | Linear OA(2587, 671, F25, 37) (dual of [671, 584, 38]-code) | [i] | ✔ | |
14 | Linear OA(2586, 669, F25, 37) (dual of [669, 583, 38]-code) | [i] | ✔ | |
15 | Linear OA(2584, 666, F25, 37) (dual of [666, 582, 38]-code) | [i] | ✔ | |
16 | Linear OA(2590, 674, F25, 38) (dual of [674, 584, 39]-code) | [i] | ✔ | |
17 | Linear OA(2589, 672, F25, 38) (dual of [672, 583, 39]-code) | [i] | ✔ | |
18 | Linear OA(2587, 669, F25, 38) (dual of [669, 582, 39]-code) | [i] | ✔ | |
19 | Linear OA(2593, 677, F25, 39) (dual of [677, 584, 40]-code) | [i] | ✔ | |
20 | Linear OA(2592, 675, F25, 39) (dual of [675, 583, 40]-code) | [i] | ✔ | |
21 | Linear OA(2597, 680, F25, 40) (dual of [680, 583, 41]-code) | [i] | ✔ | |
22 | Linear OA(2596, 678, F25, 40) (dual of [678, 582, 41]-code) | [i] | ✔ | |
23 | Linear OA(2590, 672, F25, 39) (dual of [672, 582, 40]-code) | [i] | ✔ | |
24 | Linear OA(2596, 680, F25, 40) (dual of [680, 584, 41]-code) | [i] | ✔ | |
25 | Linear OA(2595, 678, F25, 40) (dual of [678, 583, 41]-code) | [i] | ✔ | |
26 | Linear OA(2593, 675, F25, 40) (dual of [675, 582, 41]-code) | [i] | ✔ | |
27 | Linear OA(25100, 684, F25, 41) (dual of [684, 584, 42]-code) | [i] | ✔ | |
28 | Linear OA(2599, 682, F25, 41) (dual of [682, 583, 42]-code) | [i] | ✔ |