Information on Result #724112
Linear OA(2585, 675, F25, 36) (dual of [675, 590, 37]-code), using construction XX applied to C1 = C([623,25]), C2 = C([9,34]), C3 = C1 + C2 = C([9,25]), and C∩ = C1 ∩ C2 = C([623,34]) based on
- linear OA(2551, 624, F25, 27) (dual of [624, 573, 28]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,25}, and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(2551, 624, F25, 26) (dual of [624, 573, 27]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {9,10,…,34}, and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(2568, 624, F25, 36) (dual of [624, 556, 37]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,34}, and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(2534, 624, F25, 17) (dual of [624, 590, 18]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {9,10,…,25}, and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(259, 26, F25, 9) (dual of [26, 17, 10]-code or 26-arc in PG(8,25)), using
- extended Reed–Solomon code RSe(17,25) [i]
- the expurgated narrow-sense BCH-code C(I) with length 26 | 252−1, defining interval I = [0,4], and minimum distance d ≥ |{−4,−3,…,4}|+1 = 10 (BCH-bound) [i]
- algebraic-geometric code AG(F,8P) with degPÂ =Â 2 [i] based on function field F/F25 with g(F) = 0 and N(F) ≥ 26, using the rational function field F25(x) [i]
- algebraic-geometric code AG(F, Q+4P) with degQ = 4 and degPÂ =Â 3 [i] based on function field F/F25 with g(F) = 0 and N(F) ≥ 26 (see above)
- linear OA(258, 25, F25, 8) (dual of [25, 17, 9]-code or 25-arc in PG(7,25)), using
- Reed–Solomon code RS(17,25) [i]
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.