Information on Result #724187

Linear OA(2593, 682, F25, 38) (dual of [682, 589, 39]-code), using construction XX applied to C1 = C([622,25]), C2 = C([9,35]), C3 = C1 + C2 = C([9,25]), and C∩ = C1 ∩ C2 = C([622,35]) based on
  1. linear OA(2553, 624, F25, 28) (dual of [624, 571, 29]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−2,−1,…,25}, and designed minimum distance d ≥ |I|+1 = 29 [i]
  2. linear OA(2553, 624, F25, 27) (dual of [624, 571, 28]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {9,10,…,35}, and designed minimum distance d ≥ |I|+1 = 28 [i]
  3. linear OA(2572, 624, F25, 38) (dual of [624, 552, 39]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−2,−1,…,35}, and designed minimum distance d ≥ |I|+1 = 39 [i]
  4. linear OA(2534, 624, F25, 17) (dual of [624, 590, 18]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {9,10,…,25}, and designed minimum distance d ≥ |I|+1 = 18 [i]
  5. linear OA(2511, 29, F25, 10) (dual of [29, 18, 11]-code), using
  6. linear OA(2510, 29, F25, 9) (dual of [29, 19, 10]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(2593, 341, F25, 2, 38) (dual of [(341, 2), 589, 39]-NRT-code) [i]OOA Folding