Information on Result #724510
Linear OA(2564, 628, F25, 34) (dual of [628, 564, 35]-code), using construction XX applied to C1 = C([623,31]), C2 = C([0,32]), C3 = C1 + C2 = C([0,31]), and C∩ = C1 ∩ C2 = C([623,32]) based on
- linear OA(2562, 624, F25, 33) (dual of [624, 562, 34]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,31}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(2562, 624, F25, 33) (dual of [624, 562, 34]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,32], and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(2564, 624, F25, 34) (dual of [624, 560, 35]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,32}, and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(2560, 624, F25, 32) (dual of [624, 564, 33]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,31], and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(250, s, F25, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(5128, 1256, F5, 34) (dual of [1256, 1128, 35]-code) | [i] | Trace Code | |
2 | Linear OA(2584, 680, F25, 34) (dual of [680, 596, 35]-code) | [i] | (u, u+v)-Construction | |
3 | Linear OA(2585, 694, F25, 34) (dual of [694, 609, 35]-code) | [i] | ||
4 | Linear OA(2586, 696, F25, 34) (dual of [696, 610, 35]-code) | [i] | ||
5 | Linear OA(2587, 698, F25, 34) (dual of [698, 611, 35]-code) | [i] | ||
6 | Linear OA(2588, 700, F25, 34) (dual of [700, 612, 35]-code) | [i] | ||
7 | Linear OA(2590, 732, F25, 34) (dual of [732, 642, 35]-code) | [i] | ||
8 | Linear OA(2591, 754, F25, 34) (dual of [754, 663, 35]-code) | [i] | ||
9 | Linear OA(2592, 756, F25, 34) (dual of [756, 664, 35]-code) | [i] | ||
10 | Linear OA(2593, 758, F25, 34) (dual of [758, 665, 35]-code) | [i] | ||
11 | Linear OA(2594, 760, F25, 34) (dual of [760, 666, 35]-code) | [i] | ||
12 | Linear OA(2595, 836, F25, 34) (dual of [836, 741, 35]-code) | [i] | ||
13 | Linear OA(2571, 653, F25, 34) (dual of [653, 582, 35]-code) | [i] | Varšamov–Edel Lengthening | |
14 | Linear OA(2572, 675, F25, 34) (dual of [675, 603, 35]-code) | [i] | ||
15 | Linear OA(2573, 713, F25, 34) (dual of [713, 640, 35]-code) | [i] | ||
16 | Linear OA(2574, 770, F25, 34) (dual of [770, 696, 35]-code) | [i] | ||
17 | Linear OA(2575, 842, F25, 34) (dual of [842, 767, 35]-code) | [i] | ||
18 | Linear OOA(2564, 314, F25, 2, 34) (dual of [(314, 2), 564, 35]-NRT-code) | [i] | OOA Folding |