Information on Result #724539

Linear OA(2588, 652, F25, 42) (dual of [652, 564, 43]-code), using construction XX applied to C1 = C([615,31]), C2 = C([0,32]), C3 = C1 + C2 = C([0,31]), and C∩ = C1 ∩ C2 = C([615,32]) based on
  1. linear OA(2578, 624, F25, 41) (dual of [624, 546, 42]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−9,−8,…,31}, and designed minimum distance d ≥ |I|+1 = 42 [i]
  2. linear OA(2562, 624, F25, 33) (dual of [624, 562, 34]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,32], and designed minimum distance d ≥ |I|+1 = 34 [i]
  3. linear OA(2580, 624, F25, 42) (dual of [624, 544, 43]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−9,−8,…,32}, and designed minimum distance d ≥ |I|+1 = 43 [i]
  4. linear OA(2560, 624, F25, 32) (dual of [624, 564, 33]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,31], and designed minimum distance d ≥ |I|+1 = 33 [i]
  5. linear OA(258, 26, F25, 8) (dual of [26, 18, 9]-code or 26-arc in PG(7,25)), using
  6. linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(2588, 326, F25, 2, 42) (dual of [(326, 2), 564, 43]-NRT-code) [i]OOA Folding