Information on Result #724731
Linear OA(2572, 624, F25, 38) (dual of [624, 552, 39]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,37], and designed minimum distance d ≥ |I|+1 = 39
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(25106, 676, F25, 47) (dual of [676, 570, 48]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(2574, 628, F25, 39) (dual of [628, 554, 40]-code) | [i] | ✔ | |
3 | Linear OA(25110, 679, F25, 48) (dual of [679, 569, 49]-code) | [i] | ✔ | |
4 | Linear OA(25109, 676, F25, 48) (dual of [676, 567, 49]-code) | [i] | ✔ | |
5 | Linear OA(25105, 673, F25, 47) (dual of [673, 568, 48]-code) | [i] | ✔ | |
6 | Linear OA(2577, 631, F25, 40) (dual of [631, 554, 41]-code) | [i] | ✔ | |
7 | Linear OA(25108, 673, F25, 48) (dual of [673, 565, 49]-code) | [i] | ✔ | |
8 | Linear OA(25104, 670, F25, 47) (dual of [670, 566, 48]-code) | [i] | ✔ | |
9 | Linear OA(2580, 634, F25, 41) (dual of [634, 554, 42]-code) | [i] | ✔ | |
10 | Linear OA(25107, 670, F25, 48) (dual of [670, 563, 49]-code) | [i] | ✔ | |
11 | Linear OA(25103, 667, F25, 47) (dual of [667, 564, 48]-code) | [i] | ✔ | |
12 | Linear OA(2583, 637, F25, 42) (dual of [637, 554, 43]-code) | [i] | ✔ | |
13 | Linear OA(25110, 670, F25, 49) (dual of [670, 560, 50]-code) | [i] | ✔ | |
14 | Linear OA(25106, 667, F25, 48) (dual of [667, 561, 49]-code) | [i] | ✔ | |
15 | Linear OA(25102, 664, F25, 47) (dual of [664, 562, 48]-code) | [i] | ✔ | |
16 | Linear OA(2586, 640, F25, 43) (dual of [640, 554, 44]-code) | [i] | ✔ | |
17 | Linear OA(25109, 667, F25, 49) (dual of [667, 558, 50]-code) | [i] | ✔ | |
18 | Linear OA(25105, 664, F25, 48) (dual of [664, 559, 49]-code) | [i] | ✔ | |
19 | Linear OA(25101, 661, F25, 47) (dual of [661, 560, 48]-code) | [i] | ✔ | |
20 | Linear OA(2589, 643, F25, 44) (dual of [643, 554, 45]-code) | [i] | ✔ | |
21 | Linear OA(25108, 664, F25, 49) (dual of [664, 556, 50]-code) | [i] | ✔ | |
22 | Linear OA(25104, 661, F25, 48) (dual of [661, 557, 49]-code) | [i] | ✔ | |
23 | Linear OA(25100, 658, F25, 47) (dual of [658, 558, 48]-code) | [i] | ✔ | |
24 | Linear OA(2592, 646, F25, 45) (dual of [646, 554, 46]-code) | [i] | ✔ | |
25 | Linear OA(25107, 661, F25, 49) (dual of [661, 554, 50]-code) | [i] | ✔ | |
26 | Linear OA(25103, 658, F25, 48) (dual of [658, 555, 49]-code) | [i] | ✔ | |
27 | Linear OA(2599, 655, F25, 47) (dual of [655, 556, 48]-code) | [i] | ✔ | |
28 | Linear OA(2595, 649, F25, 46) (dual of [649, 554, 47]-code) | [i] | ✔ | |
29 | Linear OA(25106, 658, F25, 49) (dual of [658, 552, 50]-code) | [i] | ✔ | |
30 | Linear OA(25102, 655, F25, 48) (dual of [655, 553, 49]-code) | [i] | ✔ | |
31 | Linear OA(2598, 652, F25, 47) (dual of [652, 554, 48]-code) | [i] | ✔ | |
32 | Linear OA(2576, 628, F25, 40) (dual of [628, 552, 41]-code) | [i] | ✔ | |
33 | Linear OA(2579, 631, F25, 41) (dual of [631, 552, 42]-code) | [i] | ✔ | |
34 | Linear OA(2582, 634, F25, 42) (dual of [634, 552, 43]-code) | [i] | ✔ | |
35 | Linear OA(2585, 637, F25, 43) (dual of [637, 552, 44]-code) | [i] | ✔ | |
36 | Linear OA(2588, 640, F25, 44) (dual of [640, 552, 45]-code) | [i] | ✔ | |
37 | Linear OA(2591, 643, F25, 45) (dual of [643, 552, 46]-code) | [i] | ✔ | |
38 | Linear OA(2594, 646, F25, 46) (dual of [646, 552, 47]-code) | [i] | ✔ | |
39 | Linear OA(2597, 649, F25, 47) (dual of [649, 552, 48]-code) | [i] | ✔ | |
40 | Linear OA(25100, 652, F25, 48) (dual of [652, 552, 49]-code) | [i] | ✔ | |
41 | Linear OA(25103, 655, F25, 49) (dual of [655, 552, 50]-code) | [i] | ✔ | |
42 | Linear OA(25106, 655, F25, 50) (dual of [655, 549, 51]-code) | [i] | ✔ | |
43 | Linear OA(25106, 658, F25, 50) (dual of [658, 552, 51]-code) | [i] | ✔ |