Information on Result #725034
Linear OA(25105, 628, F25, 57) (dual of [628, 523, 58]-code), using construction XX applied to C1 = C([623,54]), C2 = C([0,55]), C3 = C1 + C2 = C([0,54]), and C∩ = C1 ∩ C2 = C([623,55]) based on
- linear OA(25103, 624, F25, 56) (dual of [624, 521, 57]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,54}, and designed minimum distance d ≥ |I|+1 = 57 [i]
- linear OA(25103, 624, F25, 56) (dual of [624, 521, 57]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,55], and designed minimum distance d ≥ |I|+1 = 57 [i]
- linear OA(25105, 624, F25, 57) (dual of [624, 519, 58]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,55}, and designed minimum distance d ≥ |I|+1 = 58 [i]
- linear OA(25101, 624, F25, 55) (dual of [624, 523, 56]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,54], and designed minimum distance d ≥ |I|+1 = 56 [i]
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(250, s, F25, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(25105, 314, F25, 2, 57) (dual of [(314, 2), 523, 58]-NRT-code) | [i] | OOA Folding |