Information on Result #725129
Linear OA(2724, 186, F27, 13) (dual of [186, 162, 14]-code), using construction XX applied to C1 = C([181,10]), C2 = C([0,11]), C3 = C1 + C2 = C([0,10]), and C∩ = C1 ∩ C2 = C([181,11]) based on
- linear OA(2722, 182, F27, 12) (dual of [182, 160, 13]-code), using the BCH-code C(I) with length 182 | 272−1, defining interval I = {−1,0,…,10}, and designed minimum distance d ≥ |I|+1 = 13 [i]
- linear OA(2722, 182, F27, 12) (dual of [182, 160, 13]-code), using the expurgated narrow-sense BCH-code C(I) with length 182 | 272−1, defining interval I = [0,11], and designed minimum distance d ≥ |I|+1 = 13 [i]
- linear OA(2724, 182, F27, 13) (dual of [182, 158, 14]-code), using the BCH-code C(I) with length 182 | 272−1, defining interval I = {−1,0,…,11}, and designed minimum distance d ≥ |I|+1 = 14 [i]
- linear OA(2720, 182, F27, 11) (dual of [182, 162, 12]-code), using the expurgated narrow-sense BCH-code C(I) with length 182 | 272−1, defining interval I = [0,10], and designed minimum distance d ≥ |I|+1 = 12 [i]
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(270, s, F27, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2776, 914, F27, 27) (dual of [914, 838, 28]-code) | [i] | (u, u+v)-Construction | |
2 | Linear OA(27102, 19868, F27, 27) (dual of [19868, 19766, 28]-code) | [i] | ||
3 | Linear OA(27100, 19872, F27, 26) (dual of [19872, 19772, 27]-code) | [i] | ||
4 | Linear OOA(2724, 93, F27, 2, 13) (dual of [(93, 2), 162, 14]-NRT-code) | [i] | OOA Folding |