Information on Result #725470
Linear OA(2771, 368, F27, 38) (dual of [368, 297, 39]-code), using construction XX applied to C1 = C([363,35]), C2 = C([0,36]), C3 = C1 + C2 = C([0,35]), and C∩ = C1 ∩ C2 = C([363,36]) based on
- linear OA(2769, 364, F27, 37) (dual of [364, 295, 38]-code), using the BCH-code C(I) with length 364 | 272−1, defining interval I = {−1,0,…,35}, and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(2769, 364, F27, 37) (dual of [364, 295, 38]-code), using the expurgated narrow-sense BCH-code C(I) with length 364 | 272−1, defining interval I = [0,36], and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(2771, 364, F27, 38) (dual of [364, 293, 39]-code), using the BCH-code C(I) with length 364 | 272−1, defining interval I = {−1,0,…,36}, and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(2767, 364, F27, 36) (dual of [364, 297, 37]-code), using the expurgated narrow-sense BCH-code C(I) with length 364 | 272−1, defining interval I = [0,35], and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(270, s, F27, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2771, 184, F27, 2, 38) (dual of [(184, 2), 297, 39]-NRT-code) | [i] | OOA Folding |