Information on Result #726037
Linear OA(2756, 728, F27, 30) (dual of [728, 672, 31]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,28}, and designed minimum distance d ≥ |I|+1 = 31
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2768, 758, F27, 31) (dual of [758, 690, 32]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(2767, 756, F27, 31) (dual of [756, 689, 32]-code) | [i] | ✔ | |
3 | Linear OA(2771, 761, F27, 32) (dual of [761, 690, 33]-code) | [i] | ✔ | |
4 | Linear OA(2766, 753, F27, 31) (dual of [753, 687, 32]-code) | [i] | ✔ | |
5 | Linear OA(2770, 759, F27, 32) (dual of [759, 689, 33]-code) | [i] | ✔ | |
6 | Linear OA(2774, 764, F27, 33) (dual of [764, 690, 34]-code) | [i] | ✔ | |
7 | Linear OA(2765, 750, F27, 31) (dual of [750, 685, 32]-code) | [i] | ✔ | |
8 | Linear OA(2773, 762, F27, 33) (dual of [762, 689, 34]-code) | [i] | ✔ | |
9 | Linear OA(2777, 767, F27, 34) (dual of [767, 690, 35]-code) | [i] | ✔ | |
10 | Linear OA(2781, 770, F27, 35) (dual of [770, 689, 36]-code) | [i] | ✔ | |
11 | Linear OA(2764, 747, F27, 31) (dual of [747, 683, 32]-code) | [i] | ✔ | |
12 | Linear OA(2776, 765, F27, 34) (dual of [765, 689, 35]-code) | [i] | ✔ | |
13 | Linear OA(2780, 770, F27, 35) (dual of [770, 690, 36]-code) | [i] | ✔ | |
14 | Linear OA(2784, 773, F27, 36) (dual of [773, 689, 37]-code) | [i] | ✔ | |
15 | Linear OA(2763, 744, F27, 31) (dual of [744, 681, 32]-code) | [i] | ✔ | |
16 | Linear OA(2779, 768, F27, 35) (dual of [768, 689, 36]-code) | [i] | ✔ | |
17 | Linear OA(2783, 773, F27, 36) (dual of [773, 690, 37]-code) | [i] | ✔ | |
18 | Linear OA(2787, 776, F27, 37) (dual of [776, 689, 38]-code) | [i] | ✔ | |
19 | Linear OA(2762, 741, F27, 31) (dual of [741, 679, 32]-code) | [i] | ✔ | |
20 | Linear OA(2782, 771, F27, 36) (dual of [771, 689, 37]-code) | [i] | ✔ | |
21 | Linear OA(2786, 776, F27, 37) (dual of [776, 690, 38]-code) | [i] | ✔ | |
22 | Linear OA(2790, 779, F27, 38) (dual of [779, 689, 39]-code) | [i] | ✔ | |
23 | Linear OA(2794, 782, F27, 39) (dual of [782, 688, 40]-code) | [i] | ✔ | |
24 | Linear OA(2761, 738, F27, 31) (dual of [738, 677, 32]-code) | [i] | ✔ | |
25 | Linear OA(2785, 774, F27, 37) (dual of [774, 689, 38]-code) | [i] | ✔ | |
26 | Linear OA(2789, 779, F27, 38) (dual of [779, 690, 39]-code) | [i] | ✔ | |
27 | Linear OA(2793, 782, F27, 39) (dual of [782, 689, 40]-code) | [i] | ✔ | |
28 | Linear OA(2788, 777, F27, 38) (dual of [777, 689, 39]-code) | [i] | ✔ | |
29 | Linear OA(2792, 782, F27, 39) (dual of [782, 690, 40]-code) | [i] | ✔ | |
30 | Linear OA(2798, 788, F27, 40) (dual of [788, 690, 41]-code) | [i] | ✔ | |
31 | Linear OA(2791, 780, F27, 39) (dual of [780, 689, 40]-code) | [i] | ✔ | |
32 | Linear OA(2797, 788, F27, 40) (dual of [788, 691, 41]-code) | [i] | ✔ | |
33 | Linear OA(2758, 732, F27, 31) (dual of [732, 674, 32]-code) | [i] | ✔ |