Information on Result #726163
Linear OA(2766, 728, F27, 35) (dual of [728, 662, 36]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,34], and designed minimum distance d ≥ |I|+1 = 36
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2786, 782, F27, 35) (dual of [782, 696, 36]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(2782, 773, F27, 35) (dual of [773, 691, 36]-code) | [i] | ✔ | |
3 | Linear OA(2786, 784, F27, 35) (dual of [784, 698, 36]-code) | [i] | ✔ | |
4 | Linear OA(2785, 782, F27, 35) (dual of [782, 697, 36]-code) | [i] | ✔ | |
5 | Linear OA(2784, 779, F27, 35) (dual of [779, 695, 36]-code) | [i] | ✔ | |
6 | Linear OA(2783, 776, F27, 35) (dual of [776, 693, 36]-code) | [i] | ✔ | |
7 | Linear OA(2783, 777, F27, 35) (dual of [777, 694, 36]-code) | [i] | ✔ | |
8 | Linear OA(2782, 775, F27, 35) (dual of [775, 693, 36]-code) | [i] | ✔ | |
9 | Linear OA(2781, 773, F27, 35) (dual of [773, 692, 36]-code) | [i] | ✔ | |
10 | Linear OA(2784, 780, F27, 35) (dual of [780, 696, 36]-code) | [i] | ✔ | |
11 | Linear OA(2780, 771, F27, 35) (dual of [771, 691, 36]-code) | [i] | ✔ | |
12 | Linear OA(2768, 732, F27, 36) (dual of [732, 664, 37]-code) | [i] | ✔ | |
13 | Linear OA(2771, 735, F27, 37) (dual of [735, 664, 38]-code) | [i] | ✔ | |
14 | Linear OA(2774, 738, F27, 38) (dual of [738, 664, 39]-code) | [i] | ✔ | |
15 | Linear OA(27102, 777, F27, 45) (dual of [777, 675, 46]-code) | [i] | ✔ | |
16 | Linear OA(27101, 775, F27, 45) (dual of [775, 674, 46]-code) | [i] | ✔ | |
17 | Linear OA(2797, 771, F27, 44) (dual of [771, 674, 45]-code) | [i] | ✔ | |
18 | Linear OA(2777, 741, F27, 39) (dual of [741, 664, 40]-code) | [i] | ✔ | |
19 | Linear OA(27100, 773, F27, 45) (dual of [773, 673, 46]-code) | [i] | ✔ | |
20 | Linear OA(2796, 768, F27, 44) (dual of [768, 672, 45]-code) | [i] | ✔ | |
21 | Linear OA(2780, 744, F27, 40) (dual of [744, 664, 41]-code) | [i] | ✔ | |
22 | Linear OA(27103, 773, F27, 46) (dual of [773, 670, 47]-code) | [i] | ✔ | |
23 | Linear OA(2799, 770, F27, 45) (dual of [770, 671, 46]-code) | [i] | ✔ | |
24 | Linear OA(2795, 765, F27, 44) (dual of [765, 670, 45]-code) | [i] | ✔ | |
25 | Linear OA(2783, 747, F27, 41) (dual of [747, 664, 42]-code) | [i] | ✔ | |
26 | Linear OA(27102, 770, F27, 46) (dual of [770, 668, 47]-code) | [i] | ✔ | |
27 | Linear OA(2798, 767, F27, 45) (dual of [767, 669, 46]-code) | [i] | ✔ | |
28 | Linear OA(2794, 762, F27, 44) (dual of [762, 668, 45]-code) | [i] | ✔ | |
29 | Linear OA(2786, 750, F27, 42) (dual of [750, 664, 43]-code) | [i] | ✔ | |
30 | Linear OA(2797, 764, F27, 45) (dual of [764, 667, 46]-code) | [i] | ✔ | |
31 | Linear OA(2793, 759, F27, 44) (dual of [759, 666, 45]-code) | [i] | ✔ | |
32 | Linear OA(2789, 753, F27, 43) (dual of [753, 664, 44]-code) | [i] | ✔ | |
33 | Linear OA(2796, 761, F27, 45) (dual of [761, 665, 46]-code) | [i] | ✔ | |
34 | Linear OA(2792, 756, F27, 44) (dual of [756, 664, 45]-code) | [i] | ✔ | |
35 | Linear OA(2795, 758, F27, 45) (dual of [758, 663, 46]-code) | [i] | ✔ | |
36 | Linear OA(2770, 732, F27, 37) (dual of [732, 662, 38]-code) | [i] | ✔ | |
37 | Linear OA(2773, 735, F27, 38) (dual of [735, 662, 39]-code) | [i] | ✔ | |
38 | Linear OA(2776, 738, F27, 39) (dual of [738, 662, 40]-code) | [i] | ✔ | |
39 | Linear OA(2779, 741, F27, 40) (dual of [741, 662, 41]-code) | [i] | ✔ | |
40 | Linear OA(2782, 744, F27, 41) (dual of [744, 662, 42]-code) | [i] | ✔ | |
41 | Linear OA(2785, 747, F27, 42) (dual of [747, 662, 43]-code) | [i] | ✔ | |
42 | Linear OA(2788, 750, F27, 43) (dual of [750, 662, 44]-code) | [i] | ✔ | |
43 | Linear OA(2791, 753, F27, 44) (dual of [753, 662, 45]-code) | [i] | ✔ | |
44 | Linear OA(2794, 756, F27, 45) (dual of [756, 662, 46]-code) | [i] | ✔ | |
45 | Linear OA(2797, 758, F27, 46) (dual of [758, 661, 47]-code) | [i] | ✔ | |
46 | Linear OA(2797, 759, F27, 46) (dual of [759, 662, 47]-code) | [i] | ✔ | |
47 | Linear OA(27100, 761, F27, 47) (dual of [761, 661, 48]-code) | [i] | ✔ | |
48 | Linear OA(27100, 762, F27, 47) (dual of [762, 662, 48]-code) | [i] | ✔ | |
49 | Linear OA(27103, 764, F27, 48) (dual of [764, 661, 49]-code) | [i] | ✔ | |
50 | Linear OA(27103, 765, F27, 48) (dual of [765, 662, 49]-code) | [i] | ✔ | |
51 | Linear OA(27106, 767, F27, 49) (dual of [767, 661, 50]-code) | [i] | ✔ | |
52 | Linear OA(27106, 768, F27, 49) (dual of [768, 662, 50]-code) | [i] | ✔ | |
53 | Linear OA(27109, 770, F27, 50) (dual of [770, 661, 51]-code) | [i] | ✔ | |
54 | Linear OA(27109, 771, F27, 50) (dual of [771, 662, 51]-code) | [i] | ✔ |