Information on Result #726178
Linear OA(2774, 758, F27, 34) (dual of [758, 684, 35]-code), using construction XX applied to C1 = C([724,28]), C2 = C([7,29]), C3 = C1 + C2 = C([7,28]), and C∩ = C1 ∩ C2 = C([724,29]) based on
- linear OA(2762, 728, F27, 33) (dual of [728, 666, 34]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−4,−3,…,28}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(2745, 728, F27, 23) (dual of [728, 683, 24]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {7,8,…,29}, and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(2764, 728, F27, 34) (dual of [728, 664, 35]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−4,−3,…,29}, and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(2743, 728, F27, 22) (dual of [728, 685, 23]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {7,8,…,28}, and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(2710, 28, F27, 10) (dual of [28, 18, 11]-code or 28-arc in PG(9,27)), using
- extended Reed–Solomon code RSe(18,27) [i]
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(270, s, F27, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2774, 379, F27, 2, 34) (dual of [(379, 2), 684, 35]-NRT-code) | [i] | OOA Folding |