Information on Result #726943
Linear OA(2770, 732, F27, 37) (dual of [732, 662, 38]-code), using construction XX applied to C1 = C([727,34]), C2 = C([0,35]), C3 = C1 + C2 = C([0,34]), and C∩ = C1 ∩ C2 = C([727,35]) based on
- linear OA(2768, 728, F27, 36) (dual of [728, 660, 37]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,34}, and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(2768, 728, F27, 36) (dual of [728, 660, 37]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,35], and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(2770, 728, F27, 37) (dual of [728, 658, 38]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,35}, and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(2766, 728, F27, 35) (dual of [728, 662, 36]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,34], and designed minimum distance d ≥ |I|+1 = 36 [i]
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(270, s, F27, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2792, 796, F27, 37) (dual of [796, 704, 38]-code) | [i] | (u, u+v)-Construction | |
2 | Linear OA(2793, 800, F27, 37) (dual of [800, 707, 38]-code) | [i] | ||
3 | Linear OA(2794, 808, F27, 37) (dual of [808, 714, 38]-code) | [i] | ||
4 | Linear OA(2795, 814, F27, 37) (dual of [814, 719, 38]-code) | [i] | ||
5 | Linear OA(2796, 816, F27, 37) (dual of [816, 720, 38]-code) | [i] | ||
6 | Linear OA(2797, 820, F27, 37) (dual of [820, 723, 38]-code) | [i] | ||
7 | Linear OA(2798, 826, F27, 37) (dual of [826, 728, 38]-code) | [i] | ||
8 | Linear OA(2799, 828, F27, 37) (dual of [828, 729, 38]-code) | [i] | ||
9 | Linear OA(27100, 830, F27, 37) (dual of [830, 730, 38]-code) | [i] | ||
10 | Linear OA(27101, 839, F27, 37) (dual of [839, 738, 38]-code) | [i] | ||
11 | Linear OA(27102, 842, F27, 37) (dual of [842, 740, 38]-code) | [i] | ||
12 | Linear OA(27103, 918, F27, 37) (dual of [918, 815, 38]-code) | [i] | ||
13 | Linear OA(27104, 1100, F27, 37) (dual of [1100, 996, 38]-code) | [i] | ||
14 | OA(2794, 814, S27, 37) | [i] | ||
15 | Linear OA(2777, 755, F27, 37) (dual of [755, 678, 38]-code) | [i] | Varšamov–Edel Lengthening | |
16 | Linear OA(2778, 774, F27, 37) (dual of [774, 696, 38]-code) | [i] | ||
17 | Linear OA(2779, 808, F27, 37) (dual of [808, 729, 38]-code) | [i] | ||
18 | Linear OA(2780, 861, F27, 37) (dual of [861, 781, 38]-code) | [i] | ||
19 | Linear OA(2781, 933, F27, 37) (dual of [933, 852, 38]-code) | [i] | ||
20 | Linear OA(2782, 1019, F27, 37) (dual of [1019, 937, 38]-code) | [i] | ||
21 | Linear OOA(2770, 366, F27, 2, 37) (dual of [(366, 2), 662, 38]-NRT-code) | [i] | OOA Folding |