Information on Result #727391
Linear OA(3247, 345, F32, 25) (dual of [345, 298, 26]-code), using construction XX applied to C1 = C([340,22]), C2 = C([0,23]), C3 = C1 + C2 = C([0,22]), and C∩ = C1 ∩ C2 = C([340,23]) based on
- linear OA(3245, 341, F32, 24) (dual of [341, 296, 25]-code), using the BCH-code C(I) with length 341 | 322−1, defining interval I = {−1,0,…,22}, and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(3245, 341, F32, 24) (dual of [341, 296, 25]-code), using the expurgated narrow-sense BCH-code C(I) with length 341 | 322−1, defining interval I = [0,23], and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(3247, 341, F32, 25) (dual of [341, 294, 26]-code), using the BCH-code C(I) with length 341 | 322−1, defining interval I = {−1,0,…,23}, and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(3243, 341, F32, 23) (dual of [341, 298, 24]-code), using the expurgated narrow-sense BCH-code C(I) with length 341 | 322−1, defining interval I = [0,22], and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(3248, 351, F32, 25) (dual of [351, 303, 26]-code) | [i] | Varšamov–Edel Lengthening |