Information on Result #727733
Linear OA(3223, 1023, F32, 12) (dual of [1023, 1000, 13]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,11], and designed minimum distance d ≥ |I|+1 = 13
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(3225, 1027, F32, 13) (dual of [1027, 1002, 14]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(3228, 1030, F32, 14) (dual of [1030, 1002, 15]-code) | [i] | ✔ | |
3 | Linear OA(3231, 1033, F32, 15) (dual of [1033, 1002, 16]-code) | [i] | ✔ | |
4 | Linear OA(3234, 1036, F32, 16) (dual of [1036, 1002, 17]-code) | [i] | ✔ | |
5 | Linear OA(3237, 1039, F32, 17) (dual of [1039, 1002, 18]-code) | [i] | ✔ | |
6 | Linear OA(3240, 1042, F32, 18) (dual of [1042, 1002, 19]-code) | [i] | ✔ | |
7 | Linear OA(3243, 1045, F32, 19) (dual of [1045, 1002, 20]-code) | [i] | ✔ | |
8 | Linear OA(3246, 1048, F32, 20) (dual of [1048, 1002, 21]-code) | [i] | ✔ | |
9 | Linear OA(3249, 1051, F32, 21) (dual of [1051, 1002, 22]-code) | [i] | ✔ | |
10 | Linear OA(3256, 1059, F32, 23) (dual of [1059, 1003, 24]-code) | [i] | ✔ | |
11 | Linear OA(3256, 1060, F32, 23) (dual of [1060, 1004, 24]-code) | [i] | ✔ | |
12 | Linear OA(3252, 1054, F32, 22) (dual of [1054, 1002, 23]-code) | [i] | ✔ | |
13 | Linear OA(3259, 1061, F32, 24) (dual of [1061, 1002, 25]-code) | [i] | ✔ | |
14 | Linear OA(3255, 1057, F32, 23) (dual of [1057, 1002, 24]-code) | [i] | ✔ | |
15 | Linear OA(3227, 1027, F32, 14) (dual of [1027, 1000, 15]-code) | [i] | ✔ | |
16 | Linear OA(3233, 1033, F32, 16) (dual of [1033, 1000, 17]-code) | [i] | ✔ | |
17 | Linear OA(3239, 1039, F32, 18) (dual of [1039, 1000, 19]-code) | [i] | ✔ | |
18 | Linear OA(3245, 1045, F32, 20) (dual of [1045, 1000, 21]-code) | [i] | ✔ | |
19 | Linear OA(3251, 1051, F32, 22) (dual of [1051, 1000, 23]-code) | [i] | ✔ | |
20 | Linear OA(3257, 1057, F32, 24) (dual of [1057, 1000, 25]-code) | [i] | ✔ | |
21 | Linear OA(3260, 1060, F32, 25) (dual of [1060, 1000, 26]-code) | [i] | ✔ | |
22 | Linear OA(3263, 1061, F32, 26) (dual of [1061, 998, 27]-code) | [i] | ✔ | |
23 | Linear OA(3263, 1063, F32, 26) (dual of [1063, 1000, 27]-code) | [i] | ✔ | |
24 | Linear OA(3266, 1064, F32, 27) (dual of [1064, 998, 28]-code) | [i] | ✔ | |
25 | Linear OA(3266, 1066, F32, 27) (dual of [1066, 1000, 28]-code) | [i] | ✔ | |
26 | Linear OA(3269, 1067, F32, 28) (dual of [1067, 998, 29]-code) | [i] | ✔ | |
27 | Linear OA(3269, 1069, F32, 28) (dual of [1069, 1000, 29]-code) | [i] | ✔ | |
28 | Linear OA(3272, 1070, F32, 29) (dual of [1070, 998, 30]-code) | [i] | ✔ | |
29 | Linear OA(3272, 1072, F32, 29) (dual of [1072, 1000, 30]-code) | [i] | ✔ | |
30 | Linear OA(3275, 1073, F32, 30) (dual of [1073, 998, 31]-code) | [i] | ✔ | |
31 | Linear OA(3278, 1073, F32, 31) (dual of [1073, 995, 32]-code) | [i] | ✔ | |
32 | Linear OA(3275, 1075, F32, 30) (dual of [1075, 1000, 31]-code) | [i] | ✔ | |
33 | Linear OA(3278, 1076, F32, 31) (dual of [1076, 998, 32]-code) | [i] | ✔ | |
34 | Linear OA(3278, 1078, F32, 31) (dual of [1078, 1000, 32]-code) | [i] | ✔ |