Information on Result #727738

Linear OA(3231, 1033, F32, 15) (dual of [1033, 1002, 16]-code), using construction XX applied to C1 = C([1020,10]), C2 = C([0,11]), C3 = C1 + C2 = C([0,10]), and C∩ = C1 ∩ C2 = C([1020,11]) based on
  1. linear OA(3227, 1023, F32, 14) (dual of [1023, 996, 15]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−3,−2,…,10}, and designed minimum distance d ≥ |I|+1 = 15 [i]
  2. linear OA(3223, 1023, F32, 12) (dual of [1023, 1000, 13]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,11], and designed minimum distance d ≥ |I|+1 = 13 [i]
  3. linear OA(3229, 1023, F32, 15) (dual of [1023, 994, 16]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−3,−2,…,11}, and designed minimum distance d ≥ |I|+1 = 16 [i]
  4. linear OA(3221, 1023, F32, 11) (dual of [1023, 1002, 12]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,10], and designed minimum distance d ≥ |I|+1 = 12 [i]
  5. linear OA(322, 8, F32, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,32)), using
  6. linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1OA(852, 1033, S8, 15) [i]Discarding Parts of the Base for OAs
2OA(1639, 1033, S16, 15) [i]