Information on Result #727872

Linear OA(3242, 1036, F32, 20) (dual of [1036, 994, 21]-code), using construction XX applied to C1 = C([1019,14]), C2 = C([0,15]), C3 = C1 + C2 = C([0,14]), and C∩ = C1 ∩ C2 = C([1019,15]) based on
  1. linear OA(3237, 1023, F32, 19) (dual of [1023, 986, 20]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−4,−3,…,14}, and designed minimum distance d ≥ |I|+1 = 20 [i]
  2. linear OA(3231, 1023, F32, 16) (dual of [1023, 992, 17]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,15], and designed minimum distance d ≥ |I|+1 = 17 [i]
  3. linear OA(3239, 1023, F32, 20) (dual of [1023, 984, 21]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−4,−3,…,15}, and designed minimum distance d ≥ |I|+1 = 21 [i]
  4. linear OA(3229, 1023, F32, 15) (dual of [1023, 994, 16]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,14], and designed minimum distance d ≥ |I|+1 = 16 [i]
  5. linear OA(323, 11, F32, 3) (dual of [11, 8, 4]-code or 11-arc in PG(2,32) or 11-cap in PG(2,32)), using
  6. linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1OA(1653, 1036, S16, 20) [i]Discarding Parts of the Base for OAs
2Linear OOA(3242, 518, F32, 2, 20) (dual of [(518, 2), 994, 21]-NRT-code) [i]OOA Folding