Information on Result #728102

Linear OA(3247, 1033, F32, 23) (dual of [1033, 986, 24]-code), using construction XX applied to C1 = C([1020,18]), C2 = C([0,19]), C3 = C1 + C2 = C([0,18]), and C∩ = C1 ∩ C2 = C([1020,19]) based on
  1. linear OA(3243, 1023, F32, 22) (dual of [1023, 980, 23]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−3,−2,…,18}, and designed minimum distance d ≥ |I|+1 = 23 [i]
  2. linear OA(3239, 1023, F32, 20) (dual of [1023, 984, 21]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21 [i]
  3. linear OA(3245, 1023, F32, 23) (dual of [1023, 978, 24]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−3,−2,…,19}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  4. linear OA(3237, 1023, F32, 19) (dual of [1023, 986, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
  5. linear OA(322, 8, F32, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,32)), using
  6. linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1OA(879, 1033, S8, 23) [i]Discarding Parts of the Base for OAs
2OA(1659, 1033, S16, 23) [i]