Information on Result #728303
Linear OA(3270, 1023, F32, 37) (dual of [1023, 953, 38]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,36], and designed minimum distance d ≥ |I|+1 = 38
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(3290, 1079, F32, 37) (dual of [1079, 989, 38]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(3289, 1076, F32, 37) (dual of [1076, 987, 38]-code) | [i] | ✔ | |
3 | Linear OA(3288, 1073, F32, 37) (dual of [1073, 985, 38]-code) | [i] | ✔ | |
4 | Linear OA(3284, 1064, F32, 37) (dual of [1064, 980, 38]-code) | [i] | ✔ | |
5 | Linear OA(3290, 1081, F32, 37) (dual of [1081, 991, 38]-code) | [i] | ✔ | |
6 | Linear OA(3289, 1078, F32, 37) (dual of [1078, 989, 38]-code) | [i] | ✔ | |
7 | Linear OA(3288, 1075, F32, 37) (dual of [1075, 987, 38]-code) | [i] | ✔ | |
8 | Linear OA(3287, 1072, F32, 37) (dual of [1072, 985, 38]-code) | [i] | ✔ | |
9 | Linear OA(3286, 1069, F32, 37) (dual of [1069, 983, 38]-code) | [i] | ✔ | |
10 | Linear OA(3284, 1065, F32, 37) (dual of [1065, 981, 38]-code) | [i] | ✔ | |
11 | Linear OA(3283, 1063, F32, 37) (dual of [1063, 980, 38]-code) | [i] | ✔ | |
12 | Linear OA(3272, 1027, F32, 38) (dual of [1027, 955, 39]-code) | [i] | ✔ | |
13 | Linear OA(3275, 1030, F32, 39) (dual of [1030, 955, 40]-code) | [i] | ✔ | |
14 | Linear OA(3278, 1033, F32, 40) (dual of [1033, 955, 41]-code) | [i] | ✔ | |
15 | Linear OA(3281, 1036, F32, 41) (dual of [1036, 955, 42]-code) | [i] | ✔ | |
16 | Linear OA(3284, 1039, F32, 42) (dual of [1039, 955, 43]-code) | [i] | ✔ | |
17 | Linear OA(3287, 1042, F32, 43) (dual of [1042, 955, 44]-code) | [i] | ✔ | |
18 | Linear OA(3290, 1045, F32, 44) (dual of [1045, 955, 45]-code) | [i] | ✔ | |
19 | Linear OA(32105, 1065, F32, 48) (dual of [1065, 960, 49]-code) | [i] | ✔ | |
20 | Linear OA(3293, 1048, F32, 45) (dual of [1048, 955, 46]-code) | [i] | ✔ | |
21 | Linear OA(32104, 1063, F32, 48) (dual of [1063, 959, 49]-code) | [i] | ✔ | |
22 | Linear OA(3296, 1051, F32, 46) (dual of [1051, 955, 47]-code) | [i] | ✔ | |
23 | Linear OA(32107, 1064, F32, 49) (dual of [1064, 957, 50]-code) | [i] | ✔ | |
24 | Linear OA(32103, 1060, F32, 48) (dual of [1060, 957, 49]-code) | [i] | ✔ | |
25 | Linear OA(3299, 1054, F32, 47) (dual of [1054, 955, 48]-code) | [i] | ✔ | |
26 | Linear OA(32106, 1061, F32, 49) (dual of [1061, 955, 50]-code) | [i] | ✔ | |
27 | Linear OA(32102, 1057, F32, 48) (dual of [1057, 955, 49]-code) | [i] | ✔ | |
28 | Linear OA(3274, 1027, F32, 39) (dual of [1027, 953, 40]-code) | [i] | ✔ | |
29 | Linear OA(3277, 1030, F32, 40) (dual of [1030, 953, 41]-code) | [i] | ✔ | |
30 | Linear OA(3280, 1033, F32, 41) (dual of [1033, 953, 42]-code) | [i] | ✔ | |
31 | Linear OA(3283, 1036, F32, 42) (dual of [1036, 953, 43]-code) | [i] | ✔ | |
32 | Linear OA(3286, 1039, F32, 43) (dual of [1039, 953, 44]-code) | [i] | ✔ | |
33 | Linear OA(3289, 1042, F32, 44) (dual of [1042, 953, 45]-code) | [i] | ✔ | |
34 | Linear OA(3292, 1045, F32, 45) (dual of [1045, 953, 46]-code) | [i] | ✔ | |
35 | Linear OA(3295, 1048, F32, 46) (dual of [1048, 953, 47]-code) | [i] | ✔ | |
36 | Linear OA(3298, 1051, F32, 47) (dual of [1051, 953, 48]-code) | [i] | ✔ | |
37 | Linear OA(32101, 1054, F32, 48) (dual of [1054, 953, 49]-code) | [i] | ✔ | |
38 | Linear OA(32104, 1057, F32, 49) (dual of [1057, 953, 50]-code) | [i] | ✔ | |
39 | Linear OA(32107, 1060, F32, 50) (dual of [1060, 953, 51]-code) | [i] | ✔ | |
40 | Linear OA(32110, 1061, F32, 51) (dual of [1061, 951, 52]-code) | [i] | ✔ | |
41 | Linear OA(32110, 1063, F32, 51) (dual of [1063, 953, 52]-code) | [i] | ✔ |