Information on Result #728330
Linear OA(3279, 1057, F32, 36) (dual of [1057, 978, 37]-code), using construction XX applied to C1 = C([1022,33]), C2 = C([11,34]), C3 = C1 + C2 = C([11,33]), and C∩ = C1 ∩ C2 = C([1022,34]) based on
- linear OA(3266, 1023, F32, 35) (dual of [1023, 957, 36]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,33}, and designed minimum distance d ≥ |I|+1 = 36 [i]
- linear OA(3247, 1023, F32, 24) (dual of [1023, 976, 25]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {11,12,…,34}, and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(3268, 1023, F32, 36) (dual of [1023, 955, 37]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,34}, and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(3245, 1023, F32, 23) (dual of [1023, 978, 24]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {11,12,…,33}, and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(3211, 32, F32, 11) (dual of [32, 21, 12]-code or 32-arc in PG(10,32)), using
- Reed–Solomon code RS(21,32) [i]
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | OA(1699, 1057, S16, 36) | [i] | Discarding Parts of the Base for OAs |