Information on Result #728488

Linear OA(3267, 1039, F32, 32) (dual of [1039, 972, 33]-code), using construction XX applied to C1 = C([1018,25]), C2 = C([0,26]), C3 = C1 + C2 = C([0,25]), and C∩ = C1 ∩ C2 = C([1018,26]) based on
  1. linear OA(3261, 1023, F32, 31) (dual of [1023, 962, 32]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−5,−4,…,25}, and designed minimum distance d ≥ |I|+1 = 32 [i]
  2. linear OA(3253, 1023, F32, 27) (dual of [1023, 970, 28]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,26], and designed minimum distance d ≥ |I|+1 = 28 [i]
  3. linear OA(3263, 1023, F32, 32) (dual of [1023, 960, 33]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−5,−4,…,26}, and designed minimum distance d ≥ |I|+1 = 33 [i]
  4. linear OA(3251, 1023, F32, 26) (dual of [1023, 972, 27]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,25], and designed minimum distance d ≥ |I|+1 = 27 [i]
  5. linear OA(324, 14, F32, 4) (dual of [14, 10, 5]-code or 14-arc in PG(3,32)), using
  6. linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1OA(1684, 1039, S16, 32) [i]Discarding Parts of the Base for OAs
2Linear OOA(3267, 782, F32, 2, 32) (dual of [(782, 2), 1497, 33]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
3Digital (35, 67, 782)-net over F32 [i]
4Linear OOA(3267, 519, F32, 2, 32) (dual of [(519, 2), 971, 33]-NRT-code) [i]OOA Folding