Information on Result #728566
Linear OA(3287, 1057, F32, 40) (dual of [1057, 970, 41]-code), using construction XX applied to C1 = C([1018,33]), C2 = C([7,34]), C3 = C1 + C2 = C([7,33]), and C∩ = C1 ∩ C2 = C([1018,34]) based on
- linear OA(3274, 1023, F32, 39) (dual of [1023, 949, 40]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−5,−4,…,33}, and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(3255, 1023, F32, 28) (dual of [1023, 968, 29]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {7,8,…,34}, and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(3276, 1023, F32, 40) (dual of [1023, 947, 41]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−5,−4,…,34}, and designed minimum distance d ≥ |I|+1 = 41 [i]
- linear OA(3253, 1023, F32, 27) (dual of [1023, 970, 28]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {7,8,…,33}, and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(3211, 32, F32, 11) (dual of [32, 21, 12]-code or 32-arc in PG(10,32)), using
- Reed–Solomon code RS(21,32) [i]
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | OA(16109, 1057, S16, 40) | [i] | Discarding Parts of the Base for OAs |