Information on Result #729484
Linear OA(4934, 155, F49, 20) (dual of [155, 121, 21]-code), using construction XX applied to C1 = C([16,34]), C2 = C([15,32]), C3 = C1 + C2 = C([16,32]), and C∩ = C1 ∩ C2 = C([15,34]) based on
- linear OA(4931, 150, F49, 19) (dual of [150, 119, 20]-code), using the BCH-code C(I) with length 150 | 492−1, defining interval I = {16,17,…,34}, and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(4931, 150, F49, 18) (dual of [150, 119, 19]-code), using the BCH-code C(I) with length 150 | 492−1, defining interval I = {15,16,…,32}, and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(4933, 150, F49, 20) (dual of [150, 117, 21]-code), using the BCH-code C(I) with length 150 | 492−1, defining interval I = {15,16,…,34}, and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(4929, 150, F49, 17) (dual of [150, 121, 18]-code), using the BCH-code C(I) with length 150 | 492−1, defining interval I = {16,17,…,32}, and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(491, 3, F49, 1) (dual of [3, 2, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(491, 49, F49, 1) (dual of [49, 48, 2]-code), using
- Reed–Solomon code RS(48,49) [i]
- discarding factors / shortening the dual code based on linear OA(491, 49, F49, 1) (dual of [49, 48, 2]-code), using
- linear OA(490, 2, F49, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(490, s, F49, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(4934, 77, F49, 2, 20) (dual of [(77, 2), 120, 21]-NRT-code) | [i] | OOA Folding |