Information on Result #729548
Linear OA(4932, 244, F49, 18) (dual of [244, 212, 19]-code), using construction XX applied to C1 = C([239,15]), C2 = C([0,16]), C3 = C1 + C2 = C([0,15]), and C∩ = C1 ∩ C2 = C([239,16]) based on
- linear OA(4930, 240, F49, 17) (dual of [240, 210, 18]-code), using the BCH-code C(I) with length 240 | 492−1, defining interval I = {−1,0,…,15}, and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(4930, 240, F49, 17) (dual of [240, 210, 18]-code), using the expurgated narrow-sense BCH-code C(I) with length 240 | 492−1, defining interval I = [0,16], and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(4932, 240, F49, 18) (dual of [240, 208, 19]-code), using the BCH-code C(I) with length 240 | 492−1, defining interval I = {−1,0,…,16}, and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(4928, 240, F49, 16) (dual of [240, 212, 17]-code), using the expurgated narrow-sense BCH-code C(I) with length 240 | 492−1, defining interval I = [0,15], and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(490, 2, F49, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(490, s, F49, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(490, 2, F49, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(4932, 244, F49, 2, 18) (dual of [(244, 2), 456, 19]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(4932, 244, F49, 3, 18) (dual of [(244, 3), 700, 19]-NRT-code) | [i] | ||
3 | Digital (14, 32, 244)-net over F49 | [i] | ||
4 | Linear OOA(4932, 122, F49, 2, 18) (dual of [(122, 2), 212, 19]-NRT-code) | [i] | OOA Folding |