Information on Result #730268
Linear OA(8151, 414, F81, 28) (dual of [414, 363, 29]-code), using construction XX applied to C1 = C([26,52]), C2 = C([25,51]), C3 = C1 + C2 = C([26,51]), and C∩ = C1 ∩ C2 = C([25,52]) based on
- linear OA(8149, 410, F81, 27) (dual of [410, 361, 28]-code), using the BCH-code C(I) with length 410 | 812−1, defining interval I = {26,27,…,52}, and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(8149, 410, F81, 27) (dual of [410, 361, 28]-code), using the BCH-code C(I) with length 410 | 812−1, defining interval I = {25,26,…,51}, and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(8151, 410, F81, 28) (dual of [410, 359, 29]-code), using the BCH-code C(I) with length 410 | 812−1, defining interval I = {25,26,…,52}, and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(8147, 410, F81, 26) (dual of [410, 363, 27]-code), using the BCH-code C(I) with length 410 | 812−1, defining interval I = {26,27,…,51}, and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(810, s, F81, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(8151, 207, F81, 2, 28) (dual of [(207, 2), 363, 29]-NRT-code) | [i] | OOA Folding |