Information on Result #730418
Linear OA(8147, 824, F81, 25) (dual of [824, 777, 26]-code), using construction XX applied to C1 = C([29,52]), C2 = C([28,51]), C3 = C1 + C2 = C([29,51]), and C∩ = C1 ∩ C2 = C([28,52]) based on
- linear OA(8145, 820, F81, 24) (dual of [820, 775, 25]-code), using the BCH-code C(I) with length 820 | 812−1, defining interval I = {29,30,…,52}, and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(8145, 820, F81, 24) (dual of [820, 775, 25]-code), using the BCH-code C(I) with length 820 | 812−1, defining interval I = {28,29,…,51}, and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(8147, 820, F81, 25) (dual of [820, 773, 26]-code), using the BCH-code C(I) with length 820 | 812−1, defining interval I = {28,29,…,52}, and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(8143, 820, F81, 23) (dual of [820, 777, 24]-code), using the BCH-code C(I) with length 820 | 812−1, defining interval I = {29,30,…,51}, and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(810, s, F81, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | OA(2763, 824, S27, 25) | [i] | Discarding Parts of the Base for OAs | |
2 | Linear OOA(8147, 412, F81, 2, 25) (dual of [(412, 2), 777, 26]-NRT-code) | [i] | OOA Folding | |
3 | Linear OOA(8147, 206, F81, 4, 25) (dual of [(206, 4), 777, 26]-NRT-code) | [i] |