Information on Result #730420

Linear OA(8149, 824, F81, 26) (dual of [824, 775, 27]-code), using construction XX applied to C1 = C([28,52]), C2 = C([27,51]), C3 = C1 + C2 = C([28,51]), and C∩ = C1 ∩ C2 = C([27,52]) based on
  1. linear OA(8147, 820, F81, 25) (dual of [820, 773, 26]-code), using the BCH-code C(I) with length 820 | 812−1, defining interval I = {28,29,…,52}, and designed minimum distance d ≥ |I|+1 = 26 [i]
  2. linear OA(8147, 820, F81, 25) (dual of [820, 773, 26]-code), using the BCH-code C(I) with length 820 | 812−1, defining interval I = {27,28,…,51}, and designed minimum distance d ≥ |I|+1 = 26 [i]
  3. linear OA(8149, 820, F81, 26) (dual of [820, 771, 27]-code), using the BCH-code C(I) with length 820 | 812−1, defining interval I = {27,28,…,52}, and designed minimum distance d ≥ |I|+1 = 27 [i]
  4. linear OA(8145, 820, F81, 24) (dual of [820, 775, 25]-code), using the BCH-code C(I) with length 820 | 812−1, defining interval I = {28,29,…,51}, and designed minimum distance d ≥ |I|+1 = 25 [i]
  5. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code), using
  6. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1OA(2766, 824, S27, 26) [i]Discarding Parts of the Base for OAs
2Linear OOA(8149, 412, F81, 2, 26) (dual of [(412, 2), 775, 27]-NRT-code) [i]OOA Folding
3Linear OOA(8149, 206, F81, 4, 26) (dual of [(206, 4), 775, 27]-NRT-code) [i]