Information on Result #730893
Linear OA(25655, 775, F256, 33) (dual of [775, 720, 34]-code), using construction XX applied to C1 = C([242,273]), C2 = C([241,272]), C3 = C1 + C2 = C([242,272]), and C∩ = C1 ∩ C2 = C([241,273]) based on
- linear OA(25653, 771, F256, 32) (dual of [771, 718, 33]-code), using the BCH-code C(I) with length 771 | 2562−1, defining interval I = {242,243,…,273}, and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(25653, 771, F256, 32) (dual of [771, 718, 33]-code), using the BCH-code C(I) with length 771 | 2562−1, defining interval I = {241,242,…,272}, and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(25655, 771, F256, 33) (dual of [771, 716, 34]-code), using the BCH-code C(I) with length 771 | 2562−1, defining interval I = {241,242,…,273}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(25651, 771, F256, 31) (dual of [771, 720, 32]-code), using the BCH-code C(I) with length 771 | 2562−1, defining interval I = {242,243,…,272}, and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(2560, 2, F256, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(2560, s, F256, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(2560, 2, F256, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | OA(12863, 775, S128, 33) | [i] | Discarding Parts of the Base for OAs | |
2 | Linear OA(25656, 840, F256, 33) (dual of [840, 784, 34]-code) | [i] | Varšamov–Edel Lengthening | |
3 | Linear OOA(25655, 387, F256, 2, 33) (dual of [(387, 2), 719, 34]-NRT-code) | [i] | OOA Folding |