Information on Result #732508

Linear OA(2580, 942, F25, 29) (dual of [942, 862, 30]-code), using (u, u+v)-construction based on
  1. linear OA(2526, 314, F25, 14) (dual of [314, 288, 15]-code), using
  2. linear OA(2554, 628, F25, 29) (dual of [628, 574, 30]-code), using
    • construction XX applied to C1 = C([623,26]), C2 = C([0,27]), C3 = C1 + C2 = C([0,26]), and C∩ = C1 ∩ C2 = C([623,27]) [i] based on
      1. linear OA(2552, 624, F25, 28) (dual of [624, 572, 29]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,26}, and designed minimum distance d ≥ |I|+1 = 29 [i]
      2. linear OA(2552, 624, F25, 28) (dual of [624, 572, 29]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,27], and designed minimum distance d ≥ |I|+1 = 29 [i]
      3. linear OA(2554, 624, F25, 29) (dual of [624, 570, 30]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,27}, and designed minimum distance d ≥ |I|+1 = 30 [i]
      4. linear OA(2550, 624, F25, 27) (dual of [624, 574, 28]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,26], and designed minimum distance d ≥ |I|+1 = 28 [i]
      5. linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
      6. linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(2580, 471, F25, 2, 29) (dual of [(471, 2), 862, 30]-NRT-code) [i]OOA Folding