Information on Result #732650
Linear OA(2564, 736, F25, 23) (dual of [736, 672, 24]-code), using (u, u+v)-construction based on
- linear OA(2519, 108, F25, 11) (dual of [108, 89, 12]-code), using
- construction XX applied to C1 = C([9,18]), C2 = C([8,17]), C3 = C1 + C2 = C([9,17]), and C∩ = C1 ∩ C2 = C([8,18]) [i] based on
- linear OA(2517, 104, F25, 10) (dual of [104, 87, 11]-code), using the BCH-code C(I) with length 104 | 252−1, defining interval I = {9,10,…,18}, and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(2517, 104, F25, 10) (dual of [104, 87, 11]-code), using the BCH-code C(I) with length 104 | 252−1, defining interval I = {8,9,…,17}, and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(2519, 104, F25, 11) (dual of [104, 85, 12]-code), using the BCH-code C(I) with length 104 | 252−1, defining interval I = {8,9,…,18}, and designed minimum distance d ≥ |I|+1 = 12 [i]
- linear OA(2515, 104, F25, 9) (dual of [104, 89, 10]-code), using the BCH-code C(I) with length 104 | 252−1, defining interval I = {9,10,…,17}, and designed minimum distance d ≥ |I|+1 = 10 [i]
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(250, s, F25, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)
- construction XX applied to C1 = C([9,18]), C2 = C([8,17]), C3 = C1 + C2 = C([9,17]), and C∩ = C1 ∩ C2 = C([8,18]) [i] based on
- linear OA(2545, 628, F25, 23) (dual of [628, 583, 24]-code), using
- construction XX applied to C1 = C([623,20]), C2 = C([0,21]), C3 = C1 + C2 = C([0,20]), and C∩ = C1 ∩ C2 = C([623,21]) [i] based on
- linear OA(2543, 624, F25, 22) (dual of [624, 581, 23]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,20}, and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(2543, 624, F25, 22) (dual of [624, 581, 23]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,21], and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(2545, 624, F25, 23) (dual of [624, 579, 24]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,21}, and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(2541, 624, F25, 21) (dual of [624, 583, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)
- construction XX applied to C1 = C([623,20]), C2 = C([0,21]), C3 = C1 + C2 = C([0,20]), and C∩ = C1 ∩ C2 = C([623,21]) [i] based on
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2564, 368, F25, 2, 23) (dual of [(368, 2), 672, 24]-NRT-code) | [i] | OOA Folding |