Information on Result #732781

Linear OA(2553, 836, F25, 19) (dual of [836, 783, 20]-code), using (u, u+v)-construction based on
  1. linear OA(2516, 208, F25, 9) (dual of [208, 192, 10]-code), using
    • the BCH-code C(I) with length 208 | 252−1, defining interval I = {1,4,7,…,25}, and designed minimum distance d ≥ |I|+1 = 10 [i]
  2. linear OA(2537, 628, F25, 19) (dual of [628, 591, 20]-code), using
    • construction XX applied to C1 = C([623,16]), C2 = C([0,17]), C3 = C1 + C2 = C([0,16]), and C∩ = C1 ∩ C2 = C([623,17]) [i] based on
      1. linear OA(2535, 624, F25, 18) (dual of [624, 589, 19]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,16}, and designed minimum distance d ≥ |I|+1 = 19 [i]
      2. linear OA(2535, 624, F25, 18) (dual of [624, 589, 19]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,17], and designed minimum distance d ≥ |I|+1 = 19 [i]
      3. linear OA(2537, 624, F25, 19) (dual of [624, 587, 20]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,17}, and designed minimum distance d ≥ |I|+1 = 20 [i]
      4. linear OA(2533, 624, F25, 17) (dual of [624, 591, 18]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,16], and designed minimum distance d ≥ |I|+1 = 18 [i]
      5. linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
      6. linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(2553, 418, F25, 2, 19) (dual of [(418, 2), 783, 20]-NRT-code) [i]OOA Folding