Information on Result #733016

Linear OA(27108, 800, F27, 43) (dual of [800, 692, 44]-code), using (u, u+v)-construction based on
  1. linear OA(2726, 68, F27, 21) (dual of [68, 42, 22]-code), using
  2. linear OA(2782, 732, F27, 43) (dual of [732, 650, 44]-code), using
    • construction XX applied to C1 = C([727,40]), C2 = C([0,41]), C3 = C1 + C2 = C([0,40]), and C∩ = C1 ∩ C2 = C([727,41]) [i] based on
      1. linear OA(2780, 728, F27, 42) (dual of [728, 648, 43]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,40}, and designed minimum distance d ≥ |I|+1 = 43 [i]
      2. linear OA(2780, 728, F27, 42) (dual of [728, 648, 43]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,41], and designed minimum distance d ≥ |I|+1 = 43 [i]
      3. linear OA(2782, 728, F27, 43) (dual of [728, 646, 44]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,41}, and designed minimum distance d ≥ |I|+1 = 44 [i]
      4. linear OA(2778, 728, F27, 41) (dual of [728, 650, 42]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,40], and designed minimum distance d ≥ |I|+1 = 42 [i]
      5. linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code), using
      6. linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(27108, 400, F27, 2, 43) (dual of [(400, 2), 692, 44]-NRT-code) [i]OOA Folding