Information on Result #737121

Linear OA(3247, 268, F3, 141) (dual of [268, 21, 142]-code), using construction X applied to Ce(151) ⊂ Ce(130) based on
  1. linear OA(3232, 243, F3, 152) (dual of [243, 11, 153]-code), using an extension Ce(151) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,151], and designed minimum distance d ≥ |I|+1 = 152 [i]
  2. linear OA(3222, 243, F3, 131) (dual of [243, 21, 132]-code), using an extension Ce(130) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,130], and designed minimum distance d ≥ |I|+1 = 131 [i]
  3. linear OA(315, 25, F3, 9) (dual of [25, 10, 10]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3247, 268, F3, 140) (dual of [268, 21, 141]-code) [i]Strength Reduction
2Linear OA(3247, 268, F3, 139) (dual of [268, 21, 140]-code) [i]
3Linear OA(3247, 268, F3, 138) (dual of [268, 21, 139]-code) [i]
4Linear OA(3248, 269, F3, 141) (dual of [269, 21, 142]-code) [i]Code Embedding in Larger Space
5Linear OA(3246, 267, F3, 140) (dual of [267, 21, 141]-code) [i]Truncation
6Linear OA(3245, 266, F3, 139) (dual of [266, 21, 140]-code) [i]
7Linear OA(3243, 264, F3, 137) (dual of [264, 21, 138]-code) [i]
8Linear OA(3242, 263, F3, 136) (dual of [263, 21, 137]-code) [i]
9Linear OA(3241, 262, F3, 135) (dual of [262, 21, 136]-code) [i]
10Linear OOA(3247, 134, F3, 2, 141) (dual of [(134, 2), 21, 142]-NRT-code) [i]OOA Folding
11Linear OOA(3247, 89, F3, 3, 141) (dual of [(89, 3), 20, 142]-NRT-code) [i]
12Linear OOA(3247, 53, F3, 5, 141) (dual of [(53, 5), 18, 142]-NRT-code) [i]