Information on Result #737455

Linear OA(485, 93, F4, 59) (dual of [93, 8, 60]-code), using construction XX applied to Ce(62) ⊂ Ce(42) ⊂ Ce(41) based on
  1. linear OA(463, 64, F4, 63) (dual of [64, 1, 64]-code or 64-arc in PG(62,4)), using an extension Ce(62) of the primitive narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [1,62], and designed minimum distance d ≥ |I|+1 = 63 [i]
  2. linear OA(457, 64, F4, 43) (dual of [64, 7, 44]-code), using an extension Ce(42) of the primitive narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [1,42], and designed minimum distance d ≥ |I|+1 = 43 [i]
  3. linear OA(456, 64, F4, 42) (dual of [64, 8, 43]-code), using an extension Ce(41) of the primitive narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [1,41], and designed minimum distance d ≥ |I|+1 = 42 [i]
  4. linear OA(421, 28, F4, 15) (dual of [28, 7, 16]-code), using
  5. linear OA(40, 1, F4, 0) (dual of [1, 1, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(485, 93, F4, 58) (dual of [93, 8, 59]-code) [i]Strength Reduction
2Linear OA(485, 93, F4, 57) (dual of [93, 8, 58]-code) [i]
3Linear OA(485, 93, F4, 56) (dual of [93, 8, 57]-code) [i]
4Linear OA(482, 90, F4, 56) (dual of [90, 8, 57]-code) [i]Truncation
5Linear OA(481, 89, F4, 55) (dual of [89, 8, 56]-code) [i]
6Linear OA(480, 88, F4, 54) (dual of [88, 8, 55]-code) [i]
7Linear OA(479, 87, F4, 53) (dual of [87, 8, 54]-code) [i]
8Linear OA(478, 86, F4, 52) (dual of [86, 8, 53]-code) [i]
9Linear OOA(485, 31, F4, 3, 59) (dual of [(31, 3), 8, 60]-NRT-code) [i]OOA Folding