Information on Result #737892

Linear OA(864, 80, F8, 45) (dual of [80, 16, 46]-code), using construction XX applied to Ce(44) ⊂ Ce(36) ⊂ Ce(35) based on
  1. linear OA(855, 64, F8, 45) (dual of [64, 9, 46]-code), using an extension Ce(44) of the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,44], and designed minimum distance d ≥ |I|+1 = 45 [i]
  2. linear OA(849, 64, F8, 37) (dual of [64, 15, 38]-code), using an extension Ce(36) of the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,36], and designed minimum distance d ≥ |I|+1 = 37 [i]
  3. linear OA(848, 64, F8, 36) (dual of [64, 16, 37]-code), using an extension Ce(35) of the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,35], and designed minimum distance d ≥ |I|+1 = 36 [i]
  4. linear OA(88, 15, F8, 7) (dual of [15, 7, 8]-code), using
  5. linear OA(80, 1, F8, 0) (dual of [1, 1, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(864, 80, F8, 44) (dual of [80, 16, 45]-code) [i]Strength Reduction
2Linear OA(864, 80, F8, 43) (dual of [80, 16, 44]-code) [i]
3Linear OA(861, 77, F8, 42) (dual of [77, 16, 43]-code) [i]Truncation
4Linear OA(868, 86, F8, 45) (dual of [86, 18, 46]-code) [i]VarÅ¡amov–Edel Lengthening
5Linear OA(867, 84, F8, 45) (dual of [84, 17, 46]-code) [i]Construction X with VarÅ¡amov Bound
6Linear OOA(864, 40, F8, 2, 45) (dual of [(40, 2), 16, 46]-NRT-code) [i]OOA Folding