Information on Result #806006
Linear OOA(265, 132, F2, 2, 16) (dual of [(132, 2), 199, 17]-NRT-code), using OOA 2-folding based on linear OA(265, 264, F2, 16) (dual of [264, 199, 17]-code), using
- 1 times truncation [i] based on linear OA(266, 265, F2, 17) (dual of [265, 199, 18]-code), using
- construction X applied to Ce(16) ⊂ Ce(14) [i] based on
- linear OA(265, 256, F2, 17) (dual of [256, 191, 18]-code), using an extension Ce(16) of the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,16], and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(257, 256, F2, 15) (dual of [256, 199, 16]-code), using an extension Ce(14) of the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,14], and designed minimum distance d ≥ |I|+1 = 15 [i]
- linear OA(21, 9, F2, 1) (dual of [9, 8, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- construction X applied to Ce(16) ⊂ Ce(14) [i] based on
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(265, 132, F2, 3, 16) (dual of [(132, 3), 331, 17]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(265, 132, F2, 4, 16) (dual of [(132, 4), 463, 17]-NRT-code) | [i] | ||
3 | Linear OOA(265, 132, F2, 5, 16) (dual of [(132, 5), 595, 17]-NRT-code) | [i] | ||
4 | Linear OOA(265, 132, F2, 6, 16) (dual of [(132, 6), 727, 17]-NRT-code) | [i] | ||
5 | Linear OOA(265, 132, F2, 7, 16) (dual of [(132, 7), 859, 17]-NRT-code) | [i] | ||
6 | Linear OOA(265, 132, F2, 8, 16) (dual of [(132, 8), 991, 17]-NRT-code) | [i] | ||
7 | Digital (49, 65, 132)-net over F2 | [i] |