Information on Result #812989
Linear OOA(367, 3286, F3, 2, 13) (dual of [(3286, 2), 6505, 14]-NRT-code), using OOA 2-folding based on linear OA(367, 6572, F3, 13) (dual of [6572, 6505, 14]-code), using
- construction XX applied to Ce(12) ⊂ Ce(10) ⊂ Ce(9) [i] based on
- linear OA(365, 6561, F3, 13) (dual of [6561, 6496, 14]-code), using an extension Ce(12) of the primitive narrow-sense BCH-code C(I) with length 6560 = 38−1, defining interval I = [1,12], and designed minimum distance d ≥ |I|+1 = 13 [i]
- linear OA(357, 6561, F3, 11) (dual of [6561, 6504, 12]-code), using an extension Ce(10) of the primitive narrow-sense BCH-code C(I) with length 6560 = 38−1, defining interval I = [1,10], and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(349, 6561, F3, 10) (dual of [6561, 6512, 11]-code), using an extension Ce(9) of the primitive narrow-sense BCH-code C(I) with length 6560 = 38−1, defining interval I = [1,9], and designed minimum distance d ≥ |I|+1 = 10 [i]
- linear OA(31, 10, F3, 1) (dual of [10, 9, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(31, s, F3, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- linear OA(30, 1, F3, 0) (dual of [1, 1, 1]-code), using
- dual of repetition code with length 1 [i]
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(367, 2850, F3, 3, 13) (dual of [(2850, 3), 8483, 14]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(367, 2850, F3, 4, 13) (dual of [(2850, 4), 11333, 14]-NRT-code) | [i] | ||
3 | Linear OOA(367, 2850, F3, 5, 13) (dual of [(2850, 5), 14183, 14]-NRT-code) | [i] | ||
4 | Digital (54, 67, 2850)-net over F3 | [i] |