Information on Result #861299
Linear OOA(2536, 158, F25, 2, 19) (dual of [(158, 2), 280, 20]-NRT-code), using OOA 2-folding based on linear OA(2536, 316, F25, 19) (dual of [316, 280, 20]-code), using
- construction XX applied to C1 = C([311,16]), C2 = C([0,17]), C3 = C1 + C2 = C([0,16]), and C∩ = C1 ∩ C2 = C([311,17]) [i] based on
- linear OA(2534, 312, F25, 18) (dual of [312, 278, 19]-code), using the BCH-code C(I) with length 312 | 252−1, defining interval I = {−1,0,…,16}, and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(2534, 312, F25, 18) (dual of [312, 278, 19]-code), using the expurgated narrow-sense BCH-code C(I) with length 312 | 252−1, defining interval I = [0,17], and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(2536, 312, F25, 19) (dual of [312, 276, 20]-code), using the BCH-code C(I) with length 312 | 252−1, defining interval I = {−1,0,…,17}, and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(2532, 312, F25, 17) (dual of [312, 280, 18]-code), using the expurgated narrow-sense BCH-code C(I) with length 312 | 252−1, defining interval I = [0,16], and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(250, s, F25, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2599, 358, F25, 2, 38) (dual of [(358, 2), 617, 39]-NRT-code) | [i] | (u, u+v)-Construction for OOAs | |
2 | Linear OOA(25100, 358, F25, 2, 39) (dual of [(358, 2), 616, 40]-NRT-code) | [i] |