Information on Result #861789
Linear OOA(2569, 366, F25, 2, 25) (dual of [(366, 2), 663, 26]-NRT-code), using OOA 2-folding based on linear OA(2569, 732, F25, 25) (dual of [732, 663, 26]-code), using
- (u, u+v)-construction [i] based on
- linear OA(2521, 108, F25, 12) (dual of [108, 87, 13]-code), using
- construction XX applied to C1 = C([8,18]), C2 = C([7,17]), C3 = C1 + C2 = C([8,17]), and C∩ = C1 ∩ C2 = C([7,18]) [i] based on
- linear OA(2519, 104, F25, 11) (dual of [104, 85, 12]-code), using the BCH-code C(I) with length 104 | 252−1, defining interval I = {8,9,…,18}, and designed minimum distance d ≥ |I|+1 = 12 [i]
- linear OA(2519, 104, F25, 11) (dual of [104, 85, 12]-code), using the BCH-code C(I) with length 104 | 252−1, defining interval I = {7,8,…,17}, and designed minimum distance d ≥ |I|+1 = 12 [i]
- linear OA(2521, 104, F25, 12) (dual of [104, 83, 13]-code), using the BCH-code C(I) with length 104 | 252−1, defining interval I = {7,8,…,18}, and designed minimum distance d ≥ |I|+1 = 13 [i]
- linear OA(2517, 104, F25, 10) (dual of [104, 87, 11]-code), using the BCH-code C(I) with length 104 | 252−1, defining interval I = {8,9,…,17}, and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(250, s, F25, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)
- construction XX applied to C1 = C([8,18]), C2 = C([7,17]), C3 = C1 + C2 = C([8,17]), and C∩ = C1 ∩ C2 = C([7,18]) [i] based on
- linear OA(2548, 624, F25, 25) (dual of [624, 576, 26]-code), using
- the primitive narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [1,25], and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(2521, 108, F25, 12) (dual of [108, 87, 13]-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.