Information on Result #865647
Linear OOA(2739, 93, F27, 2, 21) (dual of [(93, 2), 147, 22]-NRT-code), using OOA 2-folding based on linear OA(2739, 186, F27, 21) (dual of [186, 147, 22]-code), using
- construction XX applied to C1 = C([181,18]), C2 = C([0,19]), C3 = C1 + C2 = C([0,18]), and C∩ = C1 ∩ C2 = C([181,19]) [i] based on
- linear OA(2737, 182, F27, 20) (dual of [182, 145, 21]-code), using the BCH-code C(I) with length 182 | 272−1, defining interval I = {−1,0,…,18}, and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(2737, 182, F27, 20) (dual of [182, 145, 21]-code), using the expurgated narrow-sense BCH-code C(I) with length 182 | 272−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(2739, 182, F27, 21) (dual of [182, 143, 22]-code), using the BCH-code C(I) with length 182 | 272−1, defining interval I = {−1,0,…,19}, and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(2735, 182, F27, 19) (dual of [182, 147, 20]-code), using the expurgated narrow-sense BCH-code C(I) with length 182 | 272−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(270, s, F27, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.